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ABSTRACT

Tracking of spatio-temporal events is a fundamental problem in computer vision and signal

processing in general. For example, keeping track of motion activities from video sequences

for abnormality detection or spotting neuronal activity patterns inside the brain from fMRI

data. To that end, our research has two main aspects with equal emphasis - first, development

of efficient Bayesian filtering frameworks for solving real-world tracking problems and second,

understanding the temporal evolution dynamics of physical systems/phenomenon and build

statistical models for them. These models facilitate prior information to the trackers as well

as lead to intelligent signal processing for computer vision and image understanding.

The first part of the dissertation deals with the key signal processing aspects of tracking and

the challenges involved. In simple terms, tracking basically is the problem of estimating the

hidden state of a system from noisy observed data(from sensors). As frequently encountered in

real-life, due to the non-linear and non-Gaussian nature of the state spaces involved, Particle

Filters (PF) give an approximate Bayesian inference under such problem setup. However, quite

often we are faced with large dimensional state spaces together with multimodal observation

likelihood due to occlusion and clutter. This makes the existing particle filters very inefficient

for practical purposes. In order to tackle these issues, we have developed and implemented

efficient particle filters on large dimensional state spaces with applications to various visual

tracking problems in computer vision.

In the second part of the dissertation, we develop dynamical models for motion activi-

ties inspired by human visual cognitive ability of characterizing temporal evolution pattern

of shapes. We take a landmark shape based approach for the representation and tracking of

motion activities. Basically, we have developed statistical models for the shape change of a
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configuration of “landmark” points (key points of interest) over time and to use these models

for automatic landmark extraction and tracking, filtering and change detection from video

sequences. In this regard, we demonstrate superior performance of our Non-Stationary Shape

Activity(NSSA) model in comparison to other existing works. Also, owing to the large di-

mensional state space of this problem, we have utilized efficient particle filters(PF) for motion

activity tracking. In the third part of the dissertation, we develop a visual tracking algorithm

that is able to track in presence of illumination variations in the scene. In order to do that we

build and learn a dynamical model for 2D illumination patterns based on Legendre basis func-

tions. Under our problem formulation, we pose the visual tracking task as a large dimensional

tracking problem in a joint motion-illumination space and thus use an efficient PF algorithm

called PF-MT(PF with Mode Tracker) for tracking. In addition, we also demonstrate the use

of change/abnormality detection framework for tracking across drastic illumination changes.

Experiments with real-life video sequences demonstrate the usefulness of the algorithm while

many other existing approaches fail. The last part of the dissertation explores the upcoming

field of compressive sensing and looks into the possibilities of leveraging from particle filtering

ideas to do better sequential reconstruction (i.e. tracking) of sparse signals from a small num-

ber of random linear measurements. Our preliminary results show several promising aspects

to such an approach and it is an interesting direction of future research with many potential

computer vision applications.
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CHAPTER 1. Introduction

One key aspect to human intelligence is our ability to interpret the visual world around

us. This, in turn, comes from our ability to decode meaningful information embedded in

the spatio-temporal variations of signals e.g. sequence of images formed in our retina. Our

world is scattered with signals like these - from surveillance videos to medical imaging or even

signals from the outer space. These signals are important because their evolution patterns

capture vital information about the underlying physical processes. One of the primary goals

of computer vision is to mimic our brain’s remarkable ability to reveal rich information about

the physical processes from spatio-temporal data or in other words, assigning ‘meaning’ to the

visual world.

From a signal processing standpoint, the physical processes, for example, could be the

motion activity performed by an individual being observed by a video camera or it could

be the neuronal activities inside the brain being studied by Functional Magnetic Resonance

Imaging (fMRI). And, our goal could be to keep track of motion activity from the video

or follow neuronal activity patterns from fMRI data. Now, this is where ‘tracking’ comes

into picture. Tracking is a very useful statistical signal processing technique being used by

the computer vision community over the last couple of decades. Physically, tracking means:

following the state of an entity from noisy observed data. The state is essentially hidden from

the observer. In the context of above discussion, the state is what represents the underlying

physical processes. For example, the neuronal activity pattern is ‘somehow’ related to the fMRI

data but not directly accessible from it or, the motion activity of various body parts is not

‘directly obvious’ from the temporal intensity patterns of a set of pixels in the video - and hence,

we need to estimate the ‘hidden’ state from the noisy observation data if we want to extract
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meaningful information about the physical system i.e. learning the brain’s response to external

stimuli or motion activity recognition/tracking from the videos. Now, when we talk about the

relationship between the hidden state and the noisy observed data, there are two aspects to

it. First, the observation process or observation extraction mechanism. Depending on various

applications, it can vary a lot. For example, the particular techniques used for observation

extraction in fMRI leads to a specific relationship between neuronal activity and the observed

fMRI data. Similarly, there is a completely different mapping that maps a specific motion

activity to a time varying pixel intensity patterns. Now, most often, we have an inadequate

knowledge about this relationship and only use a model, known as the observation model, in

order to fit the observation process as closely as possible. This modeling error essentially is

one aspect of the noise associated with the observation data - here, noise means the unknown

aspects of the observation process. Second, is the noise incorporated in the physical process of

observation data acquisition. It could be anything from sensor noise in the video camera and

thermal noises associated with fMRI instrumentation to inevitable physical interferences like

occlusion and clutter. In general, an ideal observation model would attempt to incorporate all

these issues.

Thus, tracking is the problem of causally estimating a hidden state sequence from a se-

quence of observations. The role of the observation model is extremely crucial in this problem.

However, under a Bayesian framework, the trackers also use the prior knowledge on the state

process often called the system model. This guide the tracker towards a more informative

decision about the hidden state. The corresponding class of tracking algorithms is popularly

known in the signal processing community as Bayesian Filtering. Some examples are - Kalman

Filter(KF) [1], Extended Kalman Filter(EKF) [1], Particle Filter(PF) [2, 3] etc. Now, the ma-

jor bottleneck of using KF and EKF is that, quite often, the observation extraction associated

with natural processes leads to highly non-linear observation model. Together with this the

observation noise also turns out to be non-Gaussian because the interferences like occlusion

and clutter. Also, sometimes, the system model or state dynamical model associated with the

problem tends to be nonlinear - e.g. body dynamics for various motion activities. It has been
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shown in recent years that under a non-linear, non-Gaussian problem setup, Particle Filter

best suits the job of a tracker. But again, it has its own limitations when it comes to dealing

with large dimensional state processes and tackling the effects of occlusion and clutter. This

leads to a major bottle neck to the use of PFs as generic tracking framework.

Particle Filtering (PF) has been very popular in the computer vision community in recent

years. It has been used from visual tracking for surveillance applications to mobile robot

localization and path planning. But still, traditional PF becomes very inefficient while dealing

with large dimensional problems (generally, state space dimension of 10 or more). Large

dimensional state estimation is not just a theoretical problem in signal processing; rather, it

is very frequently encountered in real-life tracking applications. For example, the tracking

motion activities of the human body (more than 10 body joints to keep track of) or tracking

complex illumination patterns of a scene (large dimensional illumination parameter vector to

be tracked).

The reason behind this large dimensionality issues with PFs traces back to the fact that

the PF essentially is a sequential Monte Carlo technique. And, as the state space dimension in-

creases, the required number of particles for maintaining tracking accuracy drastically increases

(i.e. the effective particle size decreases). Thus, the performance of the traditional PFs takes a

severe beating under limited particle budget (under memory/processing speed constraints) for

large dimensional state space problems. Together with this, the interferences of occlusion and

clutter is inevitable in the observation process. From a signal processing standpoint, the ram-

ification of all this: a multimodal observation likelihood. Both, large dimensional state space

and multimodal observation likelihood poses significant signal processing challenges which are

out of the scopes of traditional PFs [2, 3].

This brings us to the main focus of our research and organization of the thesis. The dis-

sertation has four parts. In the first part of the dissertation we discuss how we have developed

efficient PF algorithms which can work on large dimensional state space(LDSS) as well as

handle multimodal observation likelihood due to occlusion and clutter. To that end, we have

used these efficient PF algorithms for various real-life computer vision problems like - motion
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activity tracking and automatic landmark extraction from videos and visual tracking under

illumination variations etc. This leads us to the rest of the dissertation. The second part

of the dissertation focuses on our extensive research on development of dynamical models for

motion activities based on statistical landmark shape analysis. These models serve as the state

transition prior(STP) in the efficient particle filtering framework for tracking motion activities

from videos, abnormality detection and in many other computer vision applications. In the

third part, we tackle the problem of visual tracking under illumination variations. This is a

challenging problem because, we have to perform tracking in a joint motion-illumination space

leading to a large dimensional state space. But again, this is exactly where our efficient PF

algorithms can do a great job. Another contribution of this work is the development of a dy-

namical model for illumination pattern changes in a scene using Legendre basis functions and

the application of change detection framework for tracking across drastic illumination changes.

The fourth and the final part of the dissertation is exploratory, open ended and we believe,

is a promising direction for future work. Based on the upcoming field of compressive sensing,

we take a new approach towards recursive reconstruction (i.e. tracking) of ‘large dimensional’

sparse signal sequences. We discuss more details about this in the sections to follow.

1.1 Motivation

In this section, we discuss the problems more in details and explain what motivated us

towards solving them. First, we discuss major issues/challenges behind developing efficient

PFs for large dimensional state spaces. Then we carefully look into the intuitions and practical

considerations that led us to the development of dynamical models for motion activities as

well as modeling illumination dynamics in the scene. We also look into what all practical

applications they might be useful in. Finally, we give a brief outline of our work on particle

filtered compressive sensing and motivate why and where it might be useful.
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1.1.1 Why Need Efficient PFs: The LDSS Problem

As we discussed earlier, tracking is the problem of causally estimating a hidden state se-

quence from a sequence of observations that satisfy the Hidden Markov Model (HMM) assump-

tion. A tracking algorithm recursively computes the “posterior” at time t (probability density

function of the current state conditioned on all observations until t) using the posterior at the

previous time and the current observation. For linear and Gaussian state space models, the

posterior is Gaussian and the Kalman filter provides closed form sequential solutions for com-

puting its parameters (mean, covariance) at each t. But, for most nonlinear or non-Gaussian

state space models, the posterior cannot be computed analytically. But, it can be efficiently

approximated using the particle filter (PF) [2, 4] which is a sequential Monte Carlo technique.

A PF outputs at each time t, a cloud of N “particles” (Monte Carlo samples), along with their

corresponding weights, whose empirical measure closely approximates the true posterior for

large N .

An important issue in PF design is to choose an importance sampling density that reduces

the variance of the particle weights and thus improves “effective particle size” [3]. The original

PF [2] used the state transition prior as the importance density which assumes nothing and is

easiest to implement. But since it does not use knowledge of the current observation, the weight

variance can be large (particularly when the observations are more reliable compared to the

prior model), resulting in lower effective particle sizes [4]. The “optimal” importance density

[3] is the posterior conditioned on the previous state (denote it by p∗). When p∗ is unimodal,

PF-Doucet [3] approximates it by a Gaussian about its mode (Laplace’s approximation [5])

and importance samples from the Gaussian. However, for most practical applications, p∗ turns

out to be multimodal. We discuss this more in detail in the contribution section to follow. This

is a major challenge for efficient PF implementation. Also, when in addition to multimodality,

the state space space dimension is large (typically more than 10 or 12), the effective particle

size reduces, i.e. the number of particles required for reasonable accuracy becomes very large

[2, 6]. This makes a regular PF impractical. Owing two these two main challenges in PF

literature, we have developed efficient PF algorithms that tackle them. Our contributions in
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this area are discussed in the section to follow.

1.1.1.1 Efficient PFs : Applications of PF-EIS, PF-MT, PF-EIS-MT

As mentioned earlier, when the optimal importance density (denoted as p∗) of the PF is

unimodal, it can be approximated as a Gaussian and generate importance samples from it

as done in [3]. Other work in PF literature that also implicitly assumes that p∗ is unimodal

includes [4, 19, 20]. But very often, the observation likelihood (OL) is multimodal or heavy

tailed, e.g. due to clutter, occlusions or low contrast/blur in image sequences. If the state

transition prior (STP) is broad compared to the distance between OL modes, it is easy to

see that p∗ will be multimodal [21] (see Fig. 2.2). For such problems, we have proposed

[22, 23, 21, 15] Particle Filter with Efficient Importance Sampling(PF-EIS) algorithm in which

combines PF-Original [2] with PF-Doucet [3]. We also demonstrate the applications of PF-EIS

while dealing with multimodal observation likelihood for tracking landmark shapes in video

sequences [22, 24]

In order to tackle the large dimensionality of the state space, several approaches have been

used in recent years. For example, one solution that partially addresses this issue is [25, Ch 13]

or [26] which propose to resample more than once within a time interval. But more resampling

results in more particle degeneracy [4]. In the special case when the state space model is

conditionally linear-Gaussian, or if these states can be vector quantized into a few discrete

centers, Rao Blackwellization (RB-PF) [27, 6] can be used. In general, neither assumption may

hold. But in most large dimensional state space(LDSS) problems, state change variance is large

in only a few dimensions while in the rest, the state change is quite small (LDSS property)

[21]. We exploited this property in [21] to introduce a mode tracking (MT) approximation

of importance sampling (IS), which greatly reduced the IS dimension. In other words, if the

STP is narrow enough, then there will be small error in replacing importance sampling (IS)

by mode tracking (MT) in these directions. In MT, we deterministically set the residual state

particle equal to the the mode of the residual posterior. The MT step thus significantly reduces

the importance sampling dimension of the resulting PF, consequently improving its effective
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particle size. As an extension to this, we also combine the EIS and MT ideas and develop

the PF-EIS-MT algorithm which is expected to be more efficient than PF-EIS and PF-MT

under certain conditions. To sum up, our main contribution has been to take these efficient PF

algorithms and implement them for solving real-world computer vision problems like motion

activity tracking from videos and visual tracking under illumination variations. These problem

pose the challenges of large dimensional state space as well as multimodal observation likelihood

making the use of efficient PFs very crucial for solving them.

1.1.2 Dynamical Model for Motion Activities and Applications

First, let us give the main motivations behind this work and the challenges involved. Here’s

why we would like to build dynamical models for motion activities. The fundamental idea

behind this research is actually motivated by ability of human visual cognition. It is to be

noted that as interesting as it is our ability to recognize objects without any difficulty, our

brain also has a remarkable ability to recognize/classify temporal evolution patterns of things

- e.g. shapes or may be collective evolution pattern of a group of points. Just by looking

at video and seeing how body shapes evolve over time we can easily figure out about motion

activity - running, jumping, dancing and so forth. It is also important that our interpretation

about motion activities has an invariance aspect w.r.t position, scale and rotation; meaning

- move, zoom or rotate the camera : does not effect the motion activity as we perceive it.

Question is - How do our brains do that ? Here’s an example. Say, someone provided us with

the locations of various human body joints in a black background as someone performs an

activity. Interestingly, it has been found that we can recognize (or, at least guess that it is a

human body in action) the motion activity just from the temporal evolution patterns of those

points. This has been know to the computer vision/graphics community for quite a while. We

are just good at it, even without the actual video of the person! - we call these type of points

as landmark points -key points of interest on the body e.g. various body joints corresponding

to hand, knee, shoulder etc.

In general, landmarks are the key feature points of interest in a video or image sequence.
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As shown in Fig. 1.1, it could be the body joints for motion capture or it could be facial

points for performance capture (as used in the movie AVATAR) or some times a single object

like a car or a person could be treated as a landmark point and our goal could be to study

the collective behavior of a group of interacting point objects over time. Nevertheless, it is

evident that the temporal evolution of a group of landmark points has some useful motion

activity specific information embedded in it and what is interesting is that our visual cognition

captures it without any other visual references. And, we would like to build a dynamical model

- a time series model for the shape change of a configuration of “landmark points in order to

capture this information. Now, what do we do with these models? As we will see that these

models can be very effective to be used as the prior models for motion activities in a visual

tracking framework and more. To that end, there are two main challenges involved when it

comes to the use of this dynamical model for motion activity analysis or tracking. First, the

dynamical model for landmark shape change should have generic framework allowing large to

arbitrary shape variations over the entire sequence, as expected in real-life motion activities.

Second, in order to apply these models in a visual tracking framework our tracking algorithm

has to a) efficiently work large dimensional state spaces(as the number of landmark points

could be large) and b) able to handle the effects of occlusion and clutter (see the challenges

involved in Fig. 1.2). We have used efficient particle filers developed in our earlier research for

getting around these challenges.

In the context of the above discussion, the goal of this work is to develop statistical models

for the shape change of a configuration of “landmark” points (key points of interest) over time

and to use these models for filtering, tracking (to automatically extract landmarks), synthesis

and change detection applications. “Shape” of an ordered set of landmarks was defined by

Kendall [7] as all the geometric information that remains when location, scale and rotational

effects are filtered out. The term “shape activity” was introduced in [8] to denote a particular

stochastic model for the dynamics of “landmark shapes” (dynamics after global translation,

scale and rotation effects are normalized for). A model for shape change is invariant to camera

motion under the weak perspective model (also referred to as the scaled orthographic camera)
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Figure 1.1 Landmark points. Basically, they are the key feature points of interest

in a video or image sequence.

[9] which is a valid assumption when the scene depth is small compared to distance from the

camera. The models studied in [8] were primarily for modeling stationary shape activities

(SSA) of 2D landmarks (assume constant “mean shape”). In this work we propose models for

the dynamics of nonstationary shape sequences (referred to as “nonstationary shape activities”

(NSSA) ) of 2D and of 3D landmarks. Most “activities” of a set of landmarks, for e.g. see

Fig. 8, are not stationary and hence this more general model is needed. Even if the activity is

actually stationary it still gets tracked using our model.

2D landmarks are usually the 2D coordinates of feature points of interest in an image

sequence, for example these could be the joints of the different body parts of the human body

and the goal could be to model and track articulated human body motion (see Fig. 3.21,

Fig. 3.22). Alternatively, these could be the locations of a set of interacting point objects

and the goal could be to track their collective behavior over time and detect abnormalities [8].

3D landmark shape sequences are often obtained from a time sequence of volume images, for

example by manually or automatically extract landmarks from a 3D heart MR image sequence

or from a time sequence of brain MRI volumes. 2D or 3D landmarks may also be obtained from

motion capture (MOCAP) [10] data where sensors are attached to various joints of the human
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body and their 3D coordinates measured over time. The Carnegie Mellon Motion Capture

database (CMU-MOCAP) is a common example. Modeling Mocap data has applications in

bio-mechanics and graphics to understand the motion of human joints in various actions. Some

of the applications are demonstrated in Fig. 1.3.

Figure 1.2 The challenges involved in the problem of tracking motion activities

based on landmark shapes

A shape activity model serves as the prior for model-based automatic tracking or filtering

of landmark shape sequences. We demonstrate this in chapter 3, Fig. 3.21, Fig. 3.22 for

human activity videos taken from CMU-MOCAP database. Additionally, as demonstrated in

[11], it can also be used for model-based compression of the shape sequence and this is useful

in greatly reducing the amount of data to be stored or transmitted across a network. A third

application is in graphics to synthesize new sequences for animation or to extrapolate existing

sequences, for e.g. see Fig. 3.23. A fourth key application is in model based change detection

or abnormality detection problems, e.g. [12, 8] and Fig. 3.24.

1.1.3 Visual Tracking Under Illumination Changes

Tracking illumination changes of moving objects is a challenging problem, particularly when

the illumination is different in different regions of the object. Particularly, template matching
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Figure 1.3 Various applications of modeling landmark shape dynamics. These

include motion activity tracking from videos, automatic landmarks

extraction, abnormality detection and even in biomechanics to study

the interaction among various body parts.

based tracking frameworks fail due to the object appearance change because of illumination

changes (shown in Fig. 1.4). This necessitates illumination tracking along with object motion.

In the absence of illumination change, the motion of a rigid object moving in front of a camera

that is far from the scene can be tracked using a three dimensional vector consisting of x-y

translation and uniform scale or more generally using a six dimensional affine model as in

Condensation [13]. Condensation beautifully demonstrated the use of a particle filter (PF)

for tracking through multimodal observation likelihoods resulting from background clutter or

occlusions. Now if illumination also changes over time and if different parts of the object

experience different lighting conditions, then more dimensions get added to the state space

(An example is shown in Fig. 1.5). Even a simple model of illumination such as that used in

[14], which parameterizes illumination using a Legendre basis, requires a 3-7 dimensional basis

to represent illumination accurately. But even a 7-dimensional basis will increase the total

state space dimension to between 10 and 13.

It is well known that as the state space dimension increases, the number of particles required

to track using a PF increases [3], thus making PF impractical for larger dimensional problems.
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Figure 1.4 The failure of template matching based trackers due to illumination

changes.

But, in most practical cases, the posterior of illumination change, conditioned on motion and

previous state, is unimodal. When there is no occlusion, this is true because even though the

likelihood may be multimodal as a function of the motion parameters, e.g. if there are more

than one objects in the scene that match the template, it will be unimodal conditioned on

them. Even when there is occlusion, as we explain later in chapter 4, the conditional posterior

of illumination will still be unimodal, as long as the occluding object intensity is different

enough from that of the object of interest. Also the illumination change over time is usually

very gradual and this results in a very narrow posterior. Under these two assumptions, a

recently introduced posterior mode tracking (MT) idea [15] can be adapted for tracking the

illumination state. This one step, reduces the importance sampling dimension to 3 (or 6)

instead of 10 (or 13), thus drastically reducing the number of particles required. We refer to

the resulting PF as Illumination PF-MT.

In designing the Illumination PF-MT, we use a simple motion model and use a Legendre

basis for parameterizing illumination change [14]. We assume a simple Gaussian random

walk prior on both the motion and the illumination state vectors. The illumination change

covariance learnt from training data is usually very small. The exception is when the object

transitions from shadow to sunlight or vice versa or in an indoors scenario when a light bulb

is switched off or on. During the transition phase, one needs a large illumination change
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Figure 1.5 Illumination variations on the face. Observe that illumination condi-

tions experienced by different parts of the face is different.

covariance to remain in track. This situation can be well modeled by a random walk model

with two values of covariance - a large covariance (or in effect a weak prior) when “transition”

is detected and a much smaller covariance (learnt from training data) when “no transition”

is detected. One can detect the beginning and end of “transition” using a change detection

statistic. We would like to use a statistic that detects change before significant loss of track

occurs, so that can detect the change and to compensate for it without having to reinitialize

the tracker. The recently proposed generalized ELL (gELL) statistic [16] does exactly this

since it uses the tracked part of the change to detect it. We demonstrate successful tracking

through light to shadow transitions using the gELL statistic to detect the transitions before

loss of track. This is done without any need for reinitialization.

1.1.4 Particle Filtered Modified Compressive Sensing (PaFiMoCS)

The theory of compressive sensing(CS) says that a large dimensional sparse signal can be

reconstructed from a set of highly undersampled random measurements by using convex opti-

mization techniques. In recent literature, [17, 18] proposes that if we have a partial knowledge

of the support of the signal, a modified version of compressive sensing (called mod-CS) can re-

construct the signal from even lesser number of measurements. This is particularly important

for sequential reconstruction of sparse signals where, the support at the previous instant can

be used as the predicted support and perform modCS. Obviously, this works great when we
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have a slowly varying sparsity pattern i.e. there is a small number of addition and deletion to

the support over successive instants. But what if this ‘slow variation’ assumption is not true

? - can we still do modCS by devising a mechanism to make a reasonable prediction about

the support ? PaFiMoCS basically attempts to answer this question. Under the assumption

that the sparsity pattern variation might evolve from a dynamical model, PaFiMoCS uses the

idea of sequential importance sampling from particle filtering literature, and provides the mod-

ified compressive sensing with a close enough estimate of the support. This enables mod-CS

style algorithms to work more efficiently i.e. using lesser number of observations. Together

with this, a dynamic model on the signal value change on the known support also enables

recently proposed regularized modified compressive sensing (reg-modCS) to be used under this

framework, which tends to be more robust to the observation noises.

1.2 Thesis Outline

In this section, we give an outline of the thesis. In Chapter 2, we discuss the basics behind

particle filtering and move on to the development of efficient particle filters for large dimensional

state spaces. In Chapter 3, we develop statistical dynamical models for motion activities using

landmark shape deformation models and use it for filtering, tracking to automatically extract

landmarks, change detection and landmark shape data compression. In Chapter 4, we propose

a visual tracking system that handles illumination variations in the scene. To that end, we

develop a dynamical model for illumination changes and use efficient particle filter for tracking

in a joint motion-illumination space. Together with this, we also demonstrate the use of

change/abnormality detection for tracking across drastic illumination changes. In Chapter 5,

we develop a novel algorithm for recursive reconstruction of a sparse signal sequence using

modified compressive sensing facilitated by a particle filtering step for support prediction.

Finally, we conclude the thesis in Chapter 6 and give several directions for future research.
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CHAPTER 2. Efficient Particle Filtering

In this chapter, we first go through some of the basic concepts behind Particle Filter and

in general, sequential Monte Carlo techniques for Bayesian Filtering(taken from [3]). We then

move on to the signal processing aspects and challenges involved in traditional Particle Filters,

particularly in the case of large dimensional state space and multimodal observation likelihood.

Finally, we propose efficient particle filters to tackle these challenges.

2.1 Basics : The Bayesian Filtering Problem

Consider a state-space model with t = 0, . . . , T ,

Xt = φ(Xt−1) + nt (2.1)

Yt = g(Xt) + vt (2.2)

where Xt and Yt denote the state and the observation at the current instant respectively

[3]. In real-life applications, for example, the state can be the position of a target while the

observation is the noisy sensor data about the current position and our goal could be to extract

the true ‘hidden’ state information using the observations and the state dynamical model (the

system model, eq (3.27)). The functions φ(.) and g(.) can be any linear or non-linear function.

The following things can be assumed to be known. The initial state distribution p(X0), the

state transition density p(Xt|Xt−1) and the observation likelihood p(Yt|Xt). Here, p(.) is used

to denote probability density function. The transition density and the observation likelihood

can be determined form the know distributions of i.i.d noise sequences nt and vt. The state

space is assumed to follow a hidden Markov model (HMM). In other words, the state sequence

Xt is a Markov process and the observations Yt, t = 1, 2, ... are conditionally independent
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Figure 2.1 This figure shows the hidden Markov model structure of the state

space. The state sequence Xt is a Markov process and the observa-

tions Yt, t = 1, 2, ... are conditionally independent given the state at

t

given the state at t. The states are hidden (i.e. not observable); all we can know about

the system is through the observations known at each instant. The graphical model of the

HMM is shown in Fig. 2.1. Under HMM assumption, p(Xt|Xt−1, past) = p(Xt|Xt−1) and

p(Yt|Xt, past) = p(Yt|Xt) e.g. p(Yt|Xt, Yt−1) = p(Yt|Xt).

The goal of particle filtering (or bayesian filtering) is to estimate the joint posterior state

distribution at time t i.e. p(X1:t|Y1:t) or quite often its marginal p(Xt|Y1:t). Here, X1:t =

{X1,X2, ...,Xt}. Finally, we would like to compute

It = Ep(Xt|Y1:t)(f(Xt)) =

∫

f(Xt)p(Xt|Y1:t)dXt

(2.3)

When the posterior can be assumed to be Gaussian and function φ(.) and g(.) to be linear the

same problem can be recursively solved using Kalman filter [1]. To tackle non-linearity of φ

and g(.), the Extended Kalman filter [1] can be used, but it still assumes the gaussianity of the

posterior distribution. But in many practical problems the posterior is highly non-Gaussian

( quite often multimodal ) together with non-linear φ(.) and g(.). Under such circumstances,

sequential Monte Carlo technique based particle filtering algorithm gives us a way to solve

this posterior estimation problem. In the next few sections, we shall develop the particle filter

starting with Monte Carlo sampling for pdf approximation. We also discuss sequential Monte

Carlo method (especially sequential importance sampling) and how it leads to particle filtering.
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2.2 Derivation of the Particle Filter

Say, we are trying to compute the expectation w.r.t the joint posterior distribution p(X1:t|Y1:t)

Ep(X1:t|Y1:t)[f(X1:t)] =

∫

f(X1:t)p(X1:t|Y1:t)dX1:t =?

(2.4)

In order to solve this problem, we have to look into two very important issues. a) Do we have

a closed form expression for p(X1:t|Y1:t) ? b) Can we sample from p(X1:t|Y1:t) ? Depending

on these two issues we can use three different methods to solve this problem namely, simple

Monte Carlo sampling, importance sampling and bayesian importance sampling. The method

involving bayesian importance is our main focus as it exactly is what bayesian filtering/particle

does. These methods are discussed below (taken from [3]).

2.2.1 Simple Monte Carlo Sampling

Consider the case when we can sample from the joint posterior distribution p(X1:t|Y1:t). In

that case we can approximate the distribution as a discretized version in terms of the samples

drawn from that distribution. Or,

X
(i)
1:t ∼ p(X1:t|Y1:t), i=1, . . . , N

p̂(X1:t|Y1:t) ≈
N∑

i=1

1

N
δ(X1:t −X

(i)
1:t) (2.5)

Now, we can approximate the expectation in the equation (2.4) as follows,

Ep(X1:t|Y1:t)[f(X1:t)] ≈ Ep̂(X1:t|Y1:t)[f(X1:t)]

=
1

N

N∑

i=1

f(X
(i)
1:t)

This is the most ideal case. In reality, almost always we cannot sample from the posterior

but we might have a closed form expression for the distribution. This leads to the second

method known as importance sampling.
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2.2.2 Bayesian Importance Sampling

Importance sampling can be used to estimate the properties of a particular distribution,

while only having samples from a different distribution (known as importance density or im-

portance function) rather than the distribution of interest. Thus when we have a closed form

expression for p(X1:t|Y1:t) but cannot sample from it, we use an importance density to draw

the samples [3]. We choose the importance density such that it has a convenient closed form

expression and can easily draw samples from it. Say, this importance density be given as

π(X1:t|Y1:t). Now, the problem of posterior expectation computation can be solved as follows,

It =

∫

f(X1:t)p(X1:t|Y1:t)dX1:t

=

∫

f(X1:t)
p(X1:t|Y1:t)

π(X1:t|Y1:t)
π(X1:t|Y1:t)dX1:t

= Eπ(X1:t|Y1:t)[f(X1:t)
p(X1:t|Y1:t)

π(X1:t|Y1:t)
]

Now, draw samples from π(.) and get its discretized version π̂(.). Then the computation

of posterior expectation boils down to,

X
(i)
1:t ∼ π(X1:t|Y1:t), i=1, . . . , N

Ep(X1:t|Y1:t)[f(X1:t)] ≈ Eπ̂(X1:t|Y1:t)[f(X1:t)
p(X1:t|Y1:t)

π(X1:t|Y1:t)
]

=
1

N

N∑

i=1

f(X
(i)
1:t)

p(X
(i)
1:t |Y1:t)

π(X
(i)
1:t |Y1:t)

(2.6)

The corresponding approximation to the joint posterior distribution is given as follows,

p(X1:t|Y1:t) ≈ p̂(X1:t|Y1:t)

=
N∑

i=1

w
(i)
t δ(X1:t −X

(i)
1:t) where

w
(i)
t =

1

N
w̃

(i)
t , with w̃

(i)
t =

p(X
(i)
1:t |Y1:t)

π(X
(i)
1:t |Y1:t)

Thus we can see that even if we cannot sample from the joint posterior, still we can get

around the problem by performing importance sampling from a conveniently chosen probability

distribution π(.). But computation of the weights might be a problem in this case; this takes

us to the next section.



www.manaraa.com

19

However, it turns out that in most real-life situations, we can neither sample from the

posterior (i.e. p(X1:t|Y1:t)) nor we have any closed form expression of it. Thus computing the

integral in equation (2.4) becomes challenging. Bayesian importance sampling is a variant of

the standard importance sampling technique to tackle this problem. The numerical methods

developed for solving this problem leads to sequential importance sampling (SIS) and then

finally to particle/bayesian filtering. Now, under the problem statement, we do not have a

closed form expression for the posterior p(X1:t|Y1:t). But it can be expressed in the following

manner,

p(X1:t|Y1:t) =
p(X1:t, Y1:t)

p(Y1:t)
thus

p(X1:t|Y1:t) ∝ p(X1:t, Y1:t) (2.7)

It turns out that we can at least compute p(X1:t, Y1:t) in closed form recursively. This follows

from the hidden Markov model (HMM) assumption on the state space. The recursion can be

performed as p(X1:t, Y1:t) = p(X1:t−1, Y1:t−1)p(Yt|Xt)p(Xt|Xt−1) with p(Yt|Xt) and p(Xt|Xt−1)

known. We shall utilize this fact to solve the problem of computing the posterior expectation

in a recursive fashion i.e. starting with a known p(x0) and using p(Yt|Xt), p(Xt|Xt−1), keep

computing the approximate posterior p̂(X1:t|Y1:t) and Ep(X1:t|Y1:t)[f(X1:t)] for t > 0.

The Bayesian importance sampling is performed as follows [3]. The posterior expectation

Ep(X1:t|Y1:t)[f(X1:t)] can be written as,

It =

∫

f(X1:t)p(X1:t|Y1:t)dX1:t

=

∫

f(X1:t)
p(X1:t, Y1:t)

p(Y1:t)
dX1:t

=

∫
f(X1:t)p(X1:t, Y1:t)dX1:t

p(Y1:t)

=

∫
f(X1:t)p(X1:t, Y1:t)dX1:t
∫

X1:t
p(X1:t, Y1:t)dX1:t

(2.8)

Now, let us consider the importance density to be π(X1:t|Y1:t) from which we are going

to draw samples. We choose π(.) in such a way that we at least recursively know how to

compute the expression for π(X1:t|Y1:t). The importance density π(.) is assumed to have certain

properties which are crucial to the development of the recursive algorithm for approximating
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the posterior distribution and expectation. These will be discussed soon. Now, let us get back

to the problem of computing It. From equation (2.8) it follows that

It =

∫
f(X1:t)

p(X1:t,Y1:t)
π(X1:t|Y1:t)

π(X1:t|Y1:t)dX1:t
∫

X1:t

p(X1:t,Y1:t)
π(X1:t|Y1:t)

π(X1:t|Y1:t)dX1:t

=
Eπ(.)[f(X1:t)

p(X1:t,Y1:t)
π(X1:t|Y1:t)

]

Eπ(.)[
p(X1:t,Y1:t)
π(X1:t|Y1:t)

]
(2.9)

Now we can sample from π(.) as, X
(i)
1:t ∼ π(X1:t|Y1:t), i = 1, . . . , N and then get its dis-

cretized version π̂(.). Finally, It can be estimated as follows,

Ît =
Eπ̂(.)[f(X1:t)

p(X1:t,Y1:t)
π(X1:t|Y1:t)

]

Eπ̂(.)[
p(X1:t,Y1:t)
π(X1:t|Y1:t)

]

=
1
N

∑N
i=1 f(X

(i)
1:t)w̃

(i)
t

1
N

∑N
j=1 w̃

j
t

, w̃
(i)
t =

p(X
(i)
1:t , Y1:t)

π(X
(i)
1:t |Y1:t)

=
N∑

i=1

f(X
(i)
1:t)w

(i)
t , with w

(i)
t =

w̃
(i)
t

∑N
j=1 w̃

j
t

(2.10)

The corresponding approximation to the joint posterior distribution is given as,

p̂(X1:t|Y1:t) ,

N∑

i=1

w
(i)
t δ(X1:t −X

(i)
1:t) (2.11)

where {w(i)
t }∀i are called the normalized importance weights. Now, clearly wi

t’s cannot be

computed directly at a given instant. So, we develop a recursive way to compute them.

Once this is done, we have a computationally feasible method for computing the posterior

distribution. In order to do that we first make sure the following assumption holds for the

importance density π(X1:t|Y1:t).

π(X1:t|Y1:t) = π(X1:t−1|Y1:t−1)π(Xt|X1:t−1, Y1:t) (2.12)

Since p(X1:t, Y1:t) = p(X1:t−1, Y1:t−1)p(Yt|Xt)p(Xt|Xt−1), we can develop a recursive way of
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computing the importance weights as,

w̃
(i)
t =

p(X
(i)
1:t , Y1:t)

π(X
(i)
1:t |Y1:t)

= w̃
(i)
t−1

p(Yt|X(i)
t )p(X

(i)
t |X

(i)
t−1)

π(X
(i)
t |X

(i)
1:t−1, Y1:t)

where,

X
(i)
t ∼ π(Xt|X(i)

1:t−1, Y1:t) and X
(i)
1:t = [X

(i)
1:t−1,X

(i)
t ]

(2.13)

Thus we can recursively compute the estimates of the posterior distribution and the corre-

sponding expectations starting with the initial distribution. The entire algorithm is summa-

rized in the next section which is known as sequential importance sampling (SIS).

2.2.3 Sequential Importance Sampling (SIS)

Before we give the algorithm for SIS, it is important to choose the importance density π(.).

There could be many choices. The simplest one is to use the state transition density as the

importance density [2]. Or,

π(Xt|X1:t−1, Y1:t) = p(Xt|Xt−1) (2.14)

This gives, w̃
(i)
t = w̃

(i)
t−1p(Yt|X(i)

t ) (2.15)

The optimal importance density [4, 3] is the one which minimized the variance of the impor-

tance weights conditioned on the observations and previous state samples. It can be shown

that πopt(.) = p(Xt|Xt−1, Yt) under the hidden Markov model (HMM) assumption. Finally,

the recursive algorithm for estimating the posterior density is summarized below.

SIS Algorithm

1. Sample from the initial distribution. X
(i)
0 ∼ p(X0), assign w̃

(i)
0 = w

(i)
0 = 1

N , i = 1, ..., N

2. For t > 0 and i = 1, ..., N ,
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(a) Sample X
(i)
t ∼ p(Xt|X(i)

t−1) and X
(i)
1:t = [X

(i)
1:t−1,X

(i)
t ]. Compute weights as, w̃

(i)
t =

w̃
(i)
t−1p(Yt|X(i)

t )

(b) Get the normalized importance weights w
(i)
t and finally, p̂(X1:t|Y1:t) =

∑N
i=1 w

(i)
t δ(X1:t−

X
(i)
1:t)

3. Set t+ 1← t and go back to step 2.

The SIS algorithm [3] gives us a way to recursively estimate the discretized posterior dis-

tribution. But this algorithm has one major problem which makes it almost ineffective for

practical applications. It turns out that the variance of the importance weights conditioned on

the observations only increases over time. As a result, after a few iterations, only a few sam-

ples (also called particles) will have non-zero normalized importance weights. This is known as

degeneracy of weights and it ends up wasting a lot of particles making it very inefficient. The

particle filter comes into picture to solve this problem. The basic particle filtering algorithm

is discussed in the next section.

2.2.4 The Basic Particle Filter

The traditional particle filter [2] basically modifies the SIS algorithms to prevent the de-

generacy of weights. It is also important to note that basic PF uses the state transition prior

i.e. p(Xt|Xt−1) as the importance density. As we will see in the next section, this is not the

optimal importance density. In order to get around the problem of degeneracy of weights,

what the basic PF does is: at each time step, the particles (i.e. the samples) are resampled

w.r.t their normalized importance weights. Intuitively, what this step does is : get rid of the

unlikely particles and replace them by breeding multiple copies of likely particles i.e. particles

with high importance weights. In other words, {w(i)
t }Ni=1 is used as a probability mass function

(PMF) to sample the existing particles again. It is denoted as X
(i)
t ∼ PMF [{wt}] and the

new importance weights are assigned as w
(i)
t = 1

N . The basic particle filtering algorithm is

summarized below.
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Particle Filtering (PF) Algorithm

1. Sample from the initial distribution. X
(i)
0 ∼ p(X0), assign w̃

(i)
0 = w

(i)
0 = 1

N , i = 1, ..., N

2. For t > 0,

(a) Sample X
(i)
t ∼ p(Xt|X(i)

t−1) and Compute weights as, w̃
(i)
t = p(Yt|X(i)

t ), i = 1, ..., N

(b) Get the normalized importance weights w
(i)
t as w

(i)
t =

w̃
(i)
t∑N

j=1 w̃
j
t

(c) Resample the particles as, X
(i)
t ∼ PMF [{wt}] and reassign w

(i)
t = 1

N

(d) Get the estimated posterior as, p̂(X1:t|Y1:t) =
∑N

i=1
1
N δ(X1:t −X

(i)
1:t) where X

(i)
1:t =

[X
(i)
1:t−1,X

(i)
t ]

(e) Finally, compute It = Ep(xt|Y1:t)[f(Xt)] ≈ Ep̂(xt|Y1:t)[f(Xt)] =
1
N

∑N
i=1 f(X

(i)
t )

3. Set t+ 1← t and go back to step 2.

Apart from this basic PF, there are other variants of the PF exist in literature e.g. Auxiliary

Particle Filter (Aux-PF) [87], Unscented Particle Filter, Rao-Blackwellized Particle Filter (RB-

PF) [3] and PF-Doucet [3]. Some of them tackles the problem of degeneracy e.g. Aux-PF,

while some others attempt to improve the effective particle size e.g. PF-Doucet and RB-PF.

More discussions about the relevant algorithms to follow.

2.3 Developing Efficient Particle Filters

First, let us restate the problem definition. Our goal is to sequentially estimate (track) a

hidden sequence of states, Xt, from a sequence of observations, Yt, which satisfy the Hidden

Markov Model (HMM) property, i.e.

1. For each t, the dependence Xt → Yt is Markovian, with observation likelihood (OL)

represented as p(Yt|Xt).

2. For each t, the dependence Xt−1 → Xt is Markovian, with state transition pdf (STP),

p(Xt|Xt−1).
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The posterior, πt(Xt) , p(Xt|Y1:t), needs to be recursively computed at each t, using πt−1

and the current observation Yt. Once the posterior is available, any “optimal” state estimate,

e.g. MAP or MMSE, can be computed. As mentioned above, a particle filter (PF) uses

sequential importance sampling [3] along with a resampling step [2] to output at each time

t, a cloud of N particles, {X(i)
t } with weights {w(i)

t } whose empirical measure πN
t|t(Xt) ,

∑N
i=1w

(i)
t δ(Xt − X

(i)
t ) closely approximates the true posterior, πt|t(Xt) , p(Xt|Y1:t). The

tracking problem is complicated by the following two facts:

1. For a given observation, Yt, the OL (as a function of the state, Xt) is often multimodal or

heavy tailed. If the STP is broad even in some dimensions, it will result in the posterior

given previous state, p∗, defined as

p∗(Xt) , p(Xt|Xt−1, Yt) (2.16)

becomes multimodal. It is demonstrated in Fig. 2.2 and we will have more discussion on

this issue later.

2. A second issue is applying the PF when the state space dimension is large. The effective

particle size reduces with dimension, thus requiring a larger number of particles for a

given accuracy as dimension increases.

Efficient Particle Filters developed in the sections to follow tackles these issues by carefully

splitting the state-spacer and using smart importance sampling techniques for individual parts

depending on their properties.

2.3.1 PF-EIS : PF with Efficient Importance Sampling

As mentioned earlier, the first PF algorithm, PF-Gordon [2], used the state transition prior

(i.e. p(Xt|Xt−1)) as the importance density. This assumes nothing and has very small compu-

tation burden per particle. But since it does not use knowledge of the current observation, the

weights variance can be large, particularly when the observations are more reliable than the

prior model. Thus it requires more particles for a given accuracy level compared to the case
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Figure 2.2 Consider a scalar problem with STP p(Xt|X i
t−1) =

N (Xt; 0.5X
i
t−1, σ

2
s ) and OL, p(Yt|Xt) = 0.8N (Xt, σ

2
o) +

0.2N (0, 100σ2
o). The OL is a raised Gaussian, i.e. it is heavy

tailed with mode at Yt. Thus whenever Yt is generated by the

outlier component, the OL mode is far from the STP mode. If the

STP is broad, as in the right-side plot, this results in a bimodal

p∗. We plot the − log of the OL, STP and p∗ for Yt = 1, σ2
o = 1,

and 0.5X i
t−1 = 10, σ2

s = 0.25 (narrow) and 0.5X i
t−1 = 20, σ2

s = 16

(broad).

when the knowledge of observations are used. The optimal importance density [3] is given by

the posterior conditioned on the previous state, denoted by p∗ where,

p∗(Xt) , p(Xt|Xt−1, Yt) (2.17)

But in most problems, including ours, p∗ cannot be computed analytically. When it is

unimodal, PF-Doucet [3] approximates it by a Gaussian about its mode (Laplaces approxima-

tion [5]) and samples from the Gaussian. Other work that also implicitly assume that p∗ is

unimodal includes [4, 20]. In many practical scenarios (e.g. visual tracking under occlusion

and clutter), the observation likelihood is a raised Gaussian as a function of Xt, and is thus

heavy tailed. If the equivalent state transition prior of Xt is broad, whenever Yt is generated

from the outlier distribution (e.g. from clutter), the resulting posterior given the previous

state, p∗(Xt) , p(Xt|Xt−1, Yt) will be multimodal.

For such problems where p∗ is often multimodal, particle filter with efficient importance

sampling (PF-EIS) was proposed in [15] which combines the ideas of both PF-Gordon and PF-

Doucet to handle multimodal observation likelihoods. This algorithm relies on the fact that
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Algorithm 1 PF-EIS. Going from πN
t−1 to πN

t (Xt) =
∑N

i=1 w
(i)
n δ(Xt −X

(i)
t ), X

(i)
t = [X

(i)
t,s , X

(i)
t,r ]

1. Importance Sample Xt,s: ∀i, sample X
(i)
t,s ∼ p(X

(i)
t,s |X

(i)
t−1).

2. Importance Sample on Xt,r: ∀i, sample X
(i)
t,r ∼ N (m

(i)
t ,Σ

(i)
IS) where

m
(i)
t = argminXt,r L

(i)(Xt,r) and Σ
(i)
IS = [∇2L(i)(m

(i)
t )]−1 where L(i)(Xt,r) ,

− log(p∗∗,(i)(Xt,r)) = log[p(Xt,r|X(i)
t−1,X

(i)
t,s , Yt)]

3. Weight: ∀i, compute w
(i)
t =

w̃
(i)
t

∑N
j=1 w̃

(j)
t

where w̃
(i)
t = w

(i)
t−1

p(Yt|X
(i)
t )p(X

(i)
t,r |X

(i)
t−1,X

(i)
t,s)

N (X
(i)
t,r ;m

(i)
t ,Σ

(i)
IS

)

4. Resample using any standard algorithm [4]. Set t← t+ 1 and go to step 1.

even though p∗ is multimodal, for most real-life problems it is possible to split the state vector

Xt into an “effective basis” Xt,s and “residual space” Xt,r in such a way that p∗, conditioned

on Xt,s, is unimodal i.e.

p∗∗,i(Xt,r) , p∗(Xt|Xi
t,s) = p(Xt,r|Xi

t−1,X
i
t,s, Yt) (2.18)

is unimodal. Here, the index i represents the sample from the ith particle. We sample the Xt,s

particle, Xi
t,s, from its state transition prior (STP) but use Laplace’s approximation [5, 3] to

approximate p∗∗,i by a Gaussian and sampleXt,r from it. Thus we sampleXi
t,r fromN (mi

t,Σ
i
IS)

where

mi
t = argmin

Xt,r

[− log p∗∗,i(Xt,r)] = argmin
Xt,r

Li(Xt,r) (2.19)

Σi
IS = [∇2Li(mi

t)]
−1 where (2.20)

Li(Xt,r) , [− log p(Yt|Xi
t,s,Xt,r)] + [− log p(Xt,r|Xi

t−1,X
i
t,s)] (2.21)

and N (µ,Σ) denotes a Gaussian pdf with mean µ and covariance matrix Σ. As shown in [15],

unimodality of p∗∗,i is ensured if the variance of state transition prior (STP) of Xt,r is small

enough compared to distance between the modes of OL given Xt,s in any direction. Even if

Xt,s is chosen so that this holds for most particles, at most times, the proposed algorithm will

work. More details can be found in [22] and [23].
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2.3.2 PF-MT and PF-EIS-MT : Posterior Mode Tracking

Now, if the state-space dimensionality is large (10 or more), it makes particle filtering even

more challenging because, the effective particle size [3] gets reduced with increased state-space

dimension; the number of particles required for reasonable accuracy in estimating the state

becomes very large. To get around this problem, Rao Blackwellization (RB-PF) [27, 6] can be

used provided the state space model is conditionally linear-Gaussian, or if some states can be

vector quantized into a few discrete centers. For many practical problem, neither assumption

holds.

But in most large dimensional problems, the state change variance is large in only a few

dimensions i.e. the LDSS property [21] holds (at any given time, “most of the state change”

occurs in a small number of dimensions, while the change in the rest of the state space is

small). This can be exploited [21] to further split Xt,r into [Xt,r,s;Xt,r,r] so that the covariance

of the STP of Xt,r,r is small enough to ensure that there is little error in approximating the

conditional posterior of Xt,r,r, p
∗∗,i(Xt,r,r), by a Dirac delta function at its mode. We call this

the Mode Tracking (MT) approximation of importance sampling (IS), or IS-MT. When MT

is combined with PF-EIS, the resulting algorithm is called PF-EIS-MT.. For PF-EIS-MT, the

generation of the ith particle of the state vector Xt = [Xt,s,Xt,r,s,Xt,r,r] can be summarized as

follows,

1. Importance Sample Xt,s: ∀i, sample Xi
t,s ∼ p(Xi

t,s|Xi
t−1).

2. Efficient Importance Sample Xt,r,s: ∀i,

(a) Compute mi
t and Σi

IS using (4.11), (2.20). Let mi
t = [mi

t,s mi
t,r] and Σi

IS =





ΣIS,s ΣIS,s,r

ΣIS,r ΣIS,r,s




.

(b) Sample Xi
t,r,s ∼ N (mi

t,s, Σi
IS,s).

3. Mode Track Xt,r,r: ∀i, set Xi
t,r,r = mi

t,r +Σi
IS,r,s(Σ

i
IS,s)

−1(Xi
t,r,s −mi

t,s)

The PF-EIS-MT algorithm is given in Algorithm. 2.
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Algorithm 2 PF-EIS-MT. Going from πN
t−1 to πN

t (Xt) =
∑N

i=1 w
(i)
n δ(Xt−X i

t), X i
t = [X i

t,s, X
i
t,r],

X i
t,r = [X i

t,r,s, X
i
t,r,r]

1. Importance Sample Xt,s: ∀i, sample Xi
t,s ∼ p(Xi

t,s|Xi
t−1).

2. Efficient Importance Sample Xt,r,s: ∀i,

(a) Compute mi
t and Σi

IS using (4.11), (2.20). Let mi
t = [mi

t,s mi
t,r] and Σi

IS =
[
ΣIS,s ΣIS,s,r

ΣIS,r ΣIS,r,s

]

.

(b) Sample Xi
t,r,s ∼ N (mi

t,s, Σi
IS,s).

3. Mode Track Xt,r,r: ∀i, set Xi
t,r,r = mi

t,r +Σi
IS,r,s(Σ

i
IS,s)

−1(Xi
t,r,s −mi

t,s)

4. Weight: ∀i, compute wi
t =

w̃i
t∑N

j=1 w̃
j
t

where w̃i
t = wi

t−1
p(Yt|Xi

t)p(X
i
t,r |X

i
t−1,X

i
t,s)

N (Xi
t,r; mi

t, Σi
IS

)
where Xi

t,r =

[Xi
t,r,s,X

i
t,r,r].

5. Resample using any standard algorithm [4]. Set t← t+ 1 & go to step 1.

The IS-MT approximation introduces some error in the estimate of Xt,r,r (error decreases

with decreasing spread of p∗∗,i(Xt,r,r)). But it also reduces the importance sampling dimension

from dim(Xt) to dim([Xt,s;Xt,r,s]) (a significant reduction for large dimensional problems), thus

improving the effective particle size. For carefully chosen dimension of [Xt,s;Xt,r,s], this results

in smaller total error, especially when the available number of particles, N , is small. This is

observed experimentally, but proving it theoretically is an open problem for future research.

A computationally simpler modification of PF-EIS-MT is PF-MT which was developed in

earlier work [21]. In PF-MT, we combine Xt,r,s with Xt,s and importance sample the combined

state X̃t,s = [Xt,s,Xt,r,s] from its STP, while performing mode tracking (MT) on X̃t,r = Xt,r,r.

To put the PF-MT idea in a much simpler fashion we include the following section.

2.3.2.1 PF-MT : Basic Idea

As mentioned earlier, PF-MT splits the state vector Xt into a small dimensional “effective

basis” (i.e. Xt,s in which most of the state change is assumed to occur) and the rest of the state

vector, Xt,r, belonging to the “residual space” in which the state change is assumed “small”.
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Algorithm 3 PF-MT. Going from πN
t−1 to πN

t (Xt) =
∑N

i=1 w
(i)
n δ(Xt −X

(i)
t ), X

(i)
t = [X

(i)
t,s , X

(i)
t,r ]

1. Importance Sample Xt,s: ∀i, sample X
(i)
t,s ∼ p(X

(i)
t,s |X

(i)
t−1).

2. Mode Tracking on Xt,r: ∀i, Compute the mode m
(i)
t of p∗∗,i(Xt,r) and set X

(i)
t,r = m

(i)
t

(see equation(2.22))

3. Weight: ∀i, compute w
(i)
t =

w̃
(i)
t

∑N
j=1 w̃

(j)
t

where w̃
(i)
t = w

(i)
t−1p(Yt|X(i)

t )p(X
(i)
t,r |X

(i)
t−1,X

(i)
t,s )

4. Resample using any standard algorithm [4]. Set t← t+ 1 and go to step 1.

It importance samples only on the effective basis dimensions, but replace importance sampling

by deterministic posterior Mode Tracking (MT) in the residual space. Thus the importance

sampling dimension is only dim(Xt,s) (much smaller than dim(Xt)) and this is what decides

the effective particle size.

To be precise, PF-MT assumes that the total variance of state change in residual space,

trace(Σr), where Σr denotes covariance of the state transition prior (STP) of Xt,r, is small

enough to satisfy the following two assumptions for most particles at most times:

1. The conditional posterior in residual space (posterior of Xt,r given Xi
t,s, X

(i)
t−1,r), denoted

p∗∗,i, is unimodal. p∗∗,i is defined as

p∗∗,i(Xt,r) , p(Xt,r|X(i)
t,s ,X

(i)
t−1, Yt)

∝
OL

︷ ︸︸ ︷

p(Yt|Xi
t,s,Xt,r)

STP of Xt,r
︷ ︸︸ ︷

p(Xt,r|Xi
t−1,r) (2.22)

2. The sum of eigenvalues of Σr, trace(Σr) is “small enough” to justify the Importance

Sampling with Mode Tracking (IS-MT) approximation explained below.

When only Assumption 1 holds, one can use the following importance sampling strategy

(PF-EIS, [15]): sample X
(i)
t,s , from its state transition prior, p(Xt,s|X(i)

t−1,s), but sample X
(i)
t,r

from a Gaussian approximation [3], denoted N (m
(i)
t ,Σ

(i)
IS), to p∗∗,i about its mode, denoted

m
(i)
t . The mode m

(i)
t is computed as the minimizer of L(i)(Xt,r) = − log p∗∗,i(Xt,r) and Σ

(i)
IS =

(∇2L(i)(m
(i)
t ))−1. It is easy to see that [15] Σ

(i)
IS ≤ Σr.
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If both the Assumptions hold, we can replace importance sampling (IS) from N (m
(i)
t ,Σ

(i)
IS)

(EIS) by deterministically setting X
(i)
t,r = m

(i)
t . This is the Mode Tracking (MT) approximation

of importance sampling(IS) or IS-MT. The resulting algorithm is called PF-MT (see Algorithm.

3).

Thus, in summary, PF-MT can be used if the variance of residual state change, trace(Σr),

is small enough in comparison to the distance between the observation likelihood modes and is

also small enough to justify the IS-MT approximation.

2.4 Performance Comparison : Simple Static Case

Consider the problem of estimating spatially varying temperature (temperature field) from

a network of sensors, which obtain noisy observations of temperature and some of them could

occasionally fail. Assume that we have sensors S1, . . . , SK in K different spatial locations.

The corresponding true temperature is C = [C1, . . . , CK ]T and the sensor observations are Y =

[Y1, . . . , YK ]T . Define V , [V1, . . . , VK ]T where, Vi is the coefficient along the ith eigen direction

of temperature variation. The relationship between C and V is given as, C = mc+BV , where

mc is the mean temperature vector and B is a K ×K orthonormal matrix with its columns as

the eigen directions of temperature variation. Thus the state vector becomes, X = [CT , V T ]T .

The prior on V is given as, p(V ) = N (V ;0,Σv).

We assume that any sensor fails with probability (1− p) independent of all other sensors.

When the sensor is working properly, the observation is a noise-corrupted scaled version of the

original temperature. But when the sensor fails, the observation is independent of the true

temperature at the sensor location. We model it as a large variance Gaussian. To summarize,

the observation likelihood (OL) is given as follows:

p(Y |X) = p(Y |C) =

K∏

i=1

[pN (αoCi, σ
2
o) + (1− p)N (0, 10σ2

o)] (2.23)

where αo is a scaling factor and σ2
o is the observation noise variance. Since C is deterministic

given V , we performed importance sampling on V and computed C = mc +BV .

We simulated the above system with K = 7 sensors, p = 0.8, αo = 0.9, σo = 0.5, mc =
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Sl no. Importance Sampling method (N = 30) Avg. Norm. RMSE

1 EIS-MT (Xs = [V1], Xr,s = [V2, V3], Xr,r = [V4, V5, V6, V7]) 0.0416

2 EIS-MT (Xs = [V1, V2], Xr,s = [V3, V4], Xr,r = [V5, V6, V7]) 0.0593

3 EIS (Xs = [V1], Xr,s = [V2, V3, V4, V5, V6, V7], Xr,r = empty) 0.0449

4 IS-Gaussian (Xs = empty, Xr,s = [V ], Xr,r = empty) 0.0610

5 IS-prior (Xs = [V ], Xr,s = empty, Xr,r = empty) 0.0733

Sl no. Importance Sampling method (N = 100) Avg. Norm. RMSE

1 EIS-MT (Xs = [V1], Xr,s = [V2, V3], Xr,r = [V4, V5, V6, V7]) 0.0375

2 EIS-MT (Xs = [V1, V2], Xr,s = [V3, V4], Xr,r = [V5, V6, V7]) 0.0420

3 EIS (Xs = [V1], Xr,s = [V2, V3, V4, V5, V6, V7], Xr,r = empty) 0.0368

4 IS-Gaussian (Xs = empty, Xr,s = [V ], Xr,r = empty) 0.0587

5 IS-prior (Xs = [V ], Xr,s = empty, Xr,r = empty) 0.0599

Figure 2.3 Comparing EIS-MT with EIS, IS-prior and IS-Gaussian for N = 30

(top) and N = 100 (bottom)

[25, ..., 25]T and Σv = diag([32, 52, 22, 22, 1, 1, 1]) where diag(a) denotes a diagonal matrix with

a as its diagonal. The performance measure of the system is given by averaging the normalized

RMSE, NE = ||C−Ĉ||
||C|| over 50 Monte Carlo simulations. Here, Ĉ is the importance sampling

estimate of E[C|Y ].

We computed Ĉ using the following IS techniques and compared the NE values: EIS,

EIS-MT, IS-prior and IS-Gaussian-approx. Notice that IS-prior can be interpreted as EIS-MT

with Xs = X, while IS-Gaussian can be interpreted as EIS-MT with Xr,s = X. We used two

different values of the sample size, N = 30 and N = 100. Also, while performing EIS-MT

we tried two different case : 1) when Xs = [V1], Xr,s = [V2, V3], Xr,r = [V4, V5, V6, V7] and 2)

when Xs = [V1, V2], Xr,s = [V3, V4], Xr,r = [V5, V6, V7]. The results are summarized in Fig. 2.3.

Notice that both EIS and EIS-MT significantly outperform IS-prior and IS-Gaussian. When

N is large, EIS has the best performance. But as explained earlier, when N is small, EIS-MT

outperforms EIS and and all other methods. This is because in EIS-MT we importance sample

only on 3 dimensions (while computing conditional posterior mode for the rest) and thus its

effective sample size is much larger.
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2.5 Summary

In this chapter, we have given an elaborate description of the development of efficient

particle filters which are designed to tackle the challenges associated with large dimensional

state space and multimodal observation likelihood. Here, we only give a simple quantitative

performance comparison among EIS, EIS-MT and some other methods for a simple static

case. Further performance comparisons and demonstration of their practical applications in

computer vision can be found in the next two chapters.
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CHAPTER 3. Dynamical Models for Landmark Shape Change

In this chapter, we first give a brief summary of our research contributions and related

works. Then we develop dynamical models for landmark shape deformations and demonstrate

their applications. These include various computer vision problems like tracking various motion

activities from videos, automatic landmark extraction, abnormality detection to name a few.

3.1 Contribution and Related Works

The key contribution of this work [24, 11] is a novel approach to define a generative model

for 2D and 3D nonstationary landmark shape sequences 1. The main idea is to compute the

tangent space representation of the current shape in the tangent space at the previous shape.

This can be referred to as the “shape velocity” vector since it quantifies the “difference” between

two consecutive shapes projected into the tangent space at the first one. The coefficients of

shape velocity along the orthogonal basis directions spanning the current tangent space (“shape

speed”) can be modeled using standard vector time series models. An important requirement

in doing this is to ensure that the basis directions of the current tangent space are aligned with

those of the previous one. For both 2D and 3D shape sequences, we use the tangent space

projections defined in [28, pages 71-77].

A second contribution of our work is demonstrating the use of our nonstationary model for

(a) sequentially filtering noise-corrupted landmark configurations to compute Minimum Mean

Procrustes Square Error (MMPSE) estimates of the true shape; (b) for tracking, i.e. for using

the filtering to predict the locations of the landmarks at the current time and using this predic-

1We could have just defined the model for m-D landmark shape sequences and 2D or 3D would follow as
special cases. But, we model the 2D case separately since both shape computation from preshapes (compare
(3.2) versus (3.17)) and Procrustes mean computation is more efficient in 2D than in general m-D (where the
mean is computed using an iterative algorithm) [28].
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Figure 3.1 The overall landmark shape tracking system is demonstrated. The

particle filter based tracker uses the NSSA dynamical model to extract

true landmark locations out of observations form noisy images.

tion for faster and more accurate landmarks’ extraction from the current image; (overall system

is shown in Fig. 3.1) (c) for synthesis; (d) change detection. Greatly improved performance of

our tracking and filtering algorithm over existing work [29, 8, 12] is demonstrated. Due to the

nonlinearities in the shape dynamics model and the non-Gaussian observation model (similar

to that of Condensation [13]), we use a particle filter (PF) [2] for filtering and tracking. Our

tracking problem is a typical example of a large dimensional problem with frequently multi-

modal observation likelihoods (due to background clutter and missing landmarks) and hence

we replace the basic PF used in previous work by the recently proposed PF with Efficient

Importance Sampling (PF-EIS). We demonstrate that PF-EIS has a much better performance

for landmark shape tracking than the basic PF, when the number of particles used is small.

In recent years, there has been a large amount of work on modeling sequences of landmark

shapes - both in statistics [28, 30] and in computer vision and medical image analysis [29, 8,

31, 32, 13, 33, 34, 35, 36]. Active shape models (ASM) [29] and stationary shape activities

(SSA) [8] both assume stationarity of the shape sequence (single mean shape plus stationary

deviations about it).

But in most real applications, there is large shape variation over a long sequence and so
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a single mean shape plus an ASM or SSA model does not suffice. This is explained in more

detail in Sec. 3.2.2. For e.g., consider a running sequence (see Fig. 3.21). Another example is

the changes in shape within a single heart cycle. In existing work, the ASM is usually replaced

by piecewise ASMs [31], for example different ASMs are used for systolic and diastolic motions

in [31] or SSA is replaced by piecewise SSA [32]. Piecewise ASMs are good for recognition

problems, but not for automatic tracking or for compression since they do not model the

transitions between pieces well. When piecewise SSA was used for tracking in [32], it needed

to use separate change detection and shape recognition procedures to detect when and which

piece to switch to. In this work, we demonstrate through extensive experiments that both

filtering and tracking using our model significantly outperforms either ASMs or SSAs.

Smoothing splines [37, 30] is, to the best of our knowledge, the only other existing work

that truly models nonstationary landmark shape sequences (other than the piecewise models

discussed above). But it does not provide a generative model for the shape sequences, which

is the key requirement in tracking, compression or synthesis applications.

The key difference of our work from Condensation [13] is that Condensation only models and

tracks global affine deformation between two landmark configurations. This is a valid model

for rigid or approximately rigid object motion in front of an affine camera, but not for modeling

shape change of different parts of the human body performing different activities/actions such

as running or jumping or for activities of groups of interacting persons/vehicles (modeled as

landmarks) where there is significant local shape deformation which is not affine.

Our modeling approach is similar in spirit to [38] which also uses piecewise geodesic priors

to define a generative model but in a very different context.

Other related work includes Active Appearance Models [33] and Active Appearance Motion

Models [34], which also model appearance and hence are not invariant to intensity changes

between training and test data, and work on articulated human body tracking [35, 36, 39].

One important computer vision application to our work has been to extend the NSSA

model and automatic landmark extraction technique to detect changes and abnormal activi-

ties in video sequences. This has been done using the ELL (Expected Log-likelihood) based
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change detection statistics defined in [40]. As long as the PF tracking error is under a certain

threshold, the ELL statistics can give us a quantitative measure as how badly the observations

are following the current system model. Under this setup, if at time t, ELL has exceeded its

threshold but the tracking error is still below its threshold (PF is still in track), we declare

a change in activity. This can also serve as abnormal activity detection. In case PF looses

track, the exploding tracking error can help us detect changes. It makes sense because PF per-

formance is certain to go down as the underlying state sequence no longer follows the system

model that the PF relies on. More details on change and abnormality detection can be found

in [40, 8, 41].

Another contribution of our work is that we have exploited the dynamical model for 2D/3D

landmark shapes in order to develop a novel lossy compression scheme for the landmark shape

data extracted from video/volume image sequences. This technique has potential applica-

tions in the compact storage of large volumes of biomedical landmarks’ data. There are mul-

tiple applications where key landmarks of interest are extracted either manually (e.g. by

doctors/radiologists in medical imaging applications) or using marker based motion capture

technologies (e.g. these are used for human joint motion understanding for biomechanics appli-

cations). An example is, the CMU motion capture database ([10], http://mocap.cs.cmu.edu).

Now, the question is: Can we model the correlation between temporal landmark shape se-

quences and use the model for efficient lossy-compression to efficiently reduce the amount of

data to be stored? If we can, then it would be a very efficient way of storing large volumes of

biomedical landmarks’ data. Related work addressing similar questions is [42]. We have used

the NSSA model in order to develop the compression scheme for both 2D and 3D landmarks

data (details in Sec. 3.5.1 and Sec. 3.5.2). We have compared the compression performances of

SSA and ASM with that of NSSA. It was found that NSSA had a better average performance

compared to both SSA and ASM. This can again be attributed to the fact that SSA and ASM

models tend to break down under large shape variations (e.g. a crawling or a dancing sequence

or a running sequence) because of their single mean shape assumptions. On the other hand,

NSSA, being a more generic model is less prone to such issues.
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Figure 3.2 Landmark shapes. It could represent anything from a facial expres-

sion to a body posture. When the body performs some activity, the

corresponding shape deforms in a certain pattern.

In recent years, there has been a significant amount of work on model based video and

shape compression. Quite a few of them are in the field of biomedical imaging [42, 43, 44]. For

the shape coding in object-based video sequence, [45] uses a context based arithmetic coding

of 2D shape sequences. A low bit-rate video compression technique utilizing compact encoding

of motion fields has been proposed in [46]. A lossless and near-lossless compression scheme for

4D volume biomedical image sequences has been proposed in [42].

In the next few sections, we develop dynamical models for landmark shape deformations

and demonstrate their applications.

3.2 Modeling 2D Shape Sequences

The landmarks are points of interest for describing the shape of an object. Two examples

are shown in Fig. 3.2. For modeling human motion activity or any activity involving multiple

interacting objects, we represent body joints/objects as the landmark points and the corre-

sponding activity is represented as a sequence of deforming landmark shapes over time. It

is done two steps. First, we transform the shape sequence to a vector time series using the

nonstationary shape deformation model. Then we fit standard statistical models to the time

series.
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3.2.1 2D Landmark Shape Analysis Preliminaries

We use a discrete representation of shape of a group of K landmarks. The various moving

objects (point objects) in a group activity or the rigid parts of human body in an action form

the “landmarks” as shown in Fig. 3.2. The configuration is the set of landmarks, in the 2D

case it is the x and y coordinates of the landmarks which can be represented as aK dimensional

complex vector [28].

The raw configuration is denoted as S. It can be normalized for translation (moving origin

to the centroid of the configuration) and then for scale (normalizing the translation normalized

vector by its Euclidean norm) to yield the pre-shape, denoted by w. The configuration of K

points after translation normalization, denoted by y, lies in CK−1 ((K-1)-dimensional complex

space) while the pre-shape, w, lies on a hyper-sphere in CK−1. The shape space can be

visualized as shown in Fig. 3.3. A pre-shape w1 can be aligned with another pre-shape w0

by finding the rotation angle for the best fit (minimum mean square error fit) and this gives

the Procrustes fit of w1 onto w0 [28]. This is the shape of w1 w.r.t. w0. The Procrustes

distance between preshapes w1 and w0 is the Euclidean distance between the Procrustes fit of

w1 onto w0. The Procrustes mean of a set of preshapes {wi}Ni=1 is the minimizer of the sum

of squares of Procrustes distances from each wi to an unknown unit size mean configuration

µ [28]. As shown in [28], µ can be computed as the principal eigenvector of the pre-shape

covariance matrix, i.e.

µ = arg max
u:||u||=1

u∗[
1

N

N∑

i=1

wiw
∗
i ]u (3.1)

Any pre-shape of the set can then be aligned w.r.t. this procrustes mean to return the shape

(denoted by z) w.r.t. the procrustes mean shape, µ [28].

The shape space,M, is a manifold in CK−1 and hence its actual dimension is CK−2. Thus

the tangent plane at any point of the shape space is a CK−2 dimensional hyperplane in CK

[28]. The projection of a configuration, S, in the tangent space at a pole, µ, is evaluated [28]
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Figure 3.3 Mapping from landmark configuration to a point on the shape space,

which is a unit complex hypersphere. The space space being the

surface of a sphere is essentially a non-Euclidean manifold.

as follows:

y = CKS, CK , IK − 1K1TK/K

w = y/||y||

θ = angle(w∗µ), z = wejθ (3.2)

v(z, µ) = [IK − µµT ]z (3.3)

Here, IK is a K×K identity matrix and 1K is a column vector with K rows with all entries

as 1. The notation xT denotes transpose for real vector x and x∗ denotes conjugate transpose

for complex vector x. The inverse map (projection from tangent space to shape space) is given

by [28],

z = (1− v∗v)
1
2µ+ v (3.4)

Now, various motion activities will trace out distinctive trajectories (a sequence of z’s)

on the shape space. Our goal is to model various properties (e.g. velocity etc.) along that

trajectory to develop dynamical models for the motion activities. The idea is demonstrated in

Fig. 3.4.
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Figure 3.4 This demonstrates the idea that depending on motion activity pat-

terns, corresponding landmark shape sequences will trace out their

signature trajectories on the shape space.

3.2.2 Problem with SSA and ASM models

The Stationary Shape Activity (SSA) model proposed in [8] computed a single mean shape

µ for a training sequence and aligned each preshape, wt, in the sequence to µ to obtain the

shape sequence zt. Tangent projections, v(zt, µ), of each zt were computed in the tangent

space at µ and their time series was modeled using an autoregressive (AR) model. The work

of [12] replaced AR by ARMA models and used the models for recognition problems. The

Active Shape Model (ASM) of [29] assumed that zt belongs to a vector space and replaced the

tangent space projection given in (3.3) by its linear version v(zt, µ) = zt − µ and modeled the

time series of v(zt, µ).

Since both SSA and ASM assumed a single mean shape, they could model only small devi-

ations from mean, which is only possible for stationary sequences. But in many applications,

this assumptions may not hold, for example, a crawling or a dancing sequence or see Fig. 3.21.

In these cases, the mean shapes for different time intervals are different. Or in other words,

considering the entire sequence, the shape activity is essentially nonstationary. Now, if we

force a fixed mean shape to such a deforming shape sequence, the resulting shapes, zt, would

drift too far away from µ. It is important to note that a single tangent space approximation

works as long as each element of v(zt, µ) for all shapes is less than 1 (otherwise the square root
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in (3.4) will be of a negative number). Also a time-invariant AR or ARMA model on v(zt, µ)’s

is a valid one only if the magnitudes of each element of v(zt, µ) are significantly smaller than 1

(this is because when v(zt, µ) is large, i.e. when zt is far from µ, small changes in v(zt, µ) would

correspond to very large changes in zt). But for large shape variation, v(zt, µ) will be large.

In such a scenario, both SSA and ASM would fail to correctly model the shape dynamics. An

intuitive idea about stationary and nonstationary shape sequences is demonstrated in Fig. 3.5.

Figure 3.5 Intuitive idea of stationary and nonstationary shape sequences. Sta-

tionary shape sequences have single mean shape whereas nonstation-

ary shape sequences can be thought to have evolved form a sequence

of time varying mean shapes

3.2.3 Modeling Nonstationary Shape Sequences

To model a nonstationary shape sequence, we use µ = zt−1 at time t. Thus,

zt := wt
w∗
t zt−1

|w∗
t zt−1|

vt := v(zt, zt−1) = [I − zt−1z
∗
t−1]zt (3.5)

The inverse map is given by

zt = (1− v∗t vt)
1
2 zt−1 + vt (3.6)
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Since the projection of zt−1 in the tangent space at zt−1, Tzt−1 , is zero, vt can be interpreted

as the difference, (zt− zt−1), projected into Tzt−1 , i.e. it is the “shape velocity” at time t. The

idea is demonstrated in Fig. 3.6.

Figure 3.6 The time varying mean shape and ‘shape velocity’ idea for modeling

nonstationary shape sequences.

The translation, scale and rotation normalization in 2D removes 2 complex dimensions (4

real dimensions) and thus the shape space is a K − 2 dimensional manifold in CK and so the

tangent space is a K − 2 dimensional hyperplane in CK [28]. Thus the shape velocity, vt has

only K − 2 independent complex dimensions, i.e. it can be rewritten as vt = Utc
′
t where the

columns of (Ut)K×K−2 contain the K − 2 orthonormal basis directions spanning Tzt−1 and

c′t ∈ CK−2 are the basis coefficients. c′t may be interpreted as a “shape speed” vector.

Note that, by definition, Tzt−1 is perpendicular to zt−1 and to 1K . Also, zt−1 is perpen-

dicular to 1K (due to translation normalization). Thus the projection matrix for Tzt−1 is

[IK − zt−1z
∗
t−1]CK = [IK − zt−1z

∗
t−1 − 1K1TK/K]. In other words, Ut satisfies

UtU
∗
t = [IK − zt−1z

∗
t−1 − 1K1TK/K] (3.7)

One way to obtain Ut is by computing the Singular Value Decomposition (SVD) of the

right hand side (RHS) of (3.7) and setting the columns of Ut equal to the left singular vectors

with nonzero singular values. Denote this operation by Ut = left.singular.vectors(M(zt−1))
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Figure 3.7 This figure shows the alignment of successive tangent spaces for

NSSA. When using [8, 41], the axes (here x and y) of the consec-

utive tangent planes may not be aligned (top). Our method gives

aligned axes (bottom).

where,

M(z) , [IK − zz∗ − 1K1TK/K] (3.8)

This was used in [41, 8]. But if this is done at each t, the columns of of Ut and Ut−1 may not

be aligned. As an extreme example consider the following. Let K = 4. It may happen that

Ut−1 =












1 0

0 1

0 0

0 0












and Ut =












0.1 0.995

0.995 −0.1

0 0

0 0












. In this case, it is obvious that the first column of

Ut corresponds to the second column of Ut−1 and vice versa for second column of Ut. Or, in

other words, c′t,1 corresponds to c′t−1,2 and c′t,2 to c′t−1,1. Thus if SVD is used to obtain Ut at

each t, the c′t’s cannot be assumed to be identically distributed and so it is incorrect to model

them by an AR model, which assumes stationarity of c′t. Notice the large modeling error of

this method (NSSA-unaligned) in Fig. 3.15(a).

We fix this problem as follows (also see Fig. 3.7). To obtain an aligned sequence of basis

directions over time, we obtain the mth column of Ut by starting with the mth column of

Ut−1, making it perpendicular to zt−1 (by subtracting zt−1z
∗
t−1) and then using Gram-Schmidt

orthogonalization to also make the resulting vector perpendicular to the first m−1 columns of
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Ut (i.e. by further subtracting out
∑m−1

j=1 (Ut)j(Ut)
∗
j ). This procedure can be summarized as:

Ut = g(Ut−1, zt−1), where

g(.)m , [I − zt−1z
∗
t−1 −

m−1∑

j=1

g(.)jg(.)
∗
j ](Ut−1)m,

∀m = 1, . . . (K − 2) (3.9)

Here, g(.)m denotes the mth columns of g(Ut−1, zt−1). U0 is initialized as U0 = left singular

vectors of M(z0).

Now, since the columns of Ut are aligned, it is fair to assume that c′t,j ’s are identically

distributed for each j over time. Since they are also temporally correlated, we model them by

an autoregressive model with lag 1 (AR(1) model). For simplicity of notation, we first convert

c′t into a 2K − 4 dimensional real vector. We denote this operation by,

ct = vec(c′t) (3.10)

and the inverse operation (obtaining the complex vector) is denoted by c′t = vec−1(ct). Thus,

in summary, the dynamical model of the state Xt = [Ut, zt, ct] is given by

ct = Acct−1 + νc,t, νc,t ∼ N (0,Σc)

Ut = g(Ut−1, zt−1)

zt = (1− cTt ct)
1/2zt−1 + Utvec

−1(ct) (3.11)

The NSSA generative model is demonstrated in Fig. 3.8. The last equation follows from (3.4)

and the fact that vt = Utc
′
t, U

∗
t Ut = I and c

′ ∗
t c′t = cTt ct. The above model is initialized with

z0 = w0, U0 = left.singular.vectors(M(z0)), c0 = 0 (3.12)

In the above model, we assume that νc,t is i.i.d Gaussian. We verified this fact by computing

the histogram corresponding to each of the scalar dimensions of νc,t over the entire sequence

(one of them is shown in Fig. 3.9) from a training sequence.

3.2.4 Model Parameter Estimation

The above model is completely specified by zinit = w0, Ac, Σc. Ac is the AR transition

matrix and Σc is the modeling error covariance matrix in the AR model. Given a training
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Figure 3.8 The NSSA generative model. Given the time series parameters for

the evolution of shape velocities for a given activity we can generate

the corresponding landmark shape sequence.

sequence of landmark configurations, {St}N−1
t=0 , a maximum-likelihood (ML) estimate of the

parameters can be obtained as follows.

1. Obtain the shape sequence {zt} by translation, scale and rotation normalization of

{St}(N−1)
t=0 i.e. compute yt = CKSt and wt =

yt
||yt||

for each t. Set z0 = w0. Compute

zt = wt
w∗
t zt−1

|w∗
t zt−1|

, ∀t > 0 (3.13)

2. For all t, obtain the shape velocity coefficients {ct} from {zt}. This involves computing

Ut = g(Ut−1, zt−1)

c′t = U∗
t vt = U∗

t zt

ct = vec(c′t) (3.14)

starting with U0 = left.singular.vectors(M(z0)). The second equation above follows

because U∗
t vt = U∗

t [IK−zt−1z
∗
t−1]zt = U∗

t [IK−zt−1z
∗
t−1−1K1TK/K]zt = U∗

t UtU
∗
t zt = U∗

t zt

(the second equality follows because zt is translation normalized so that 1TKzt = 0 and

third one follows because by definition, UtU
∗
t = [IK − zt−1z

∗
t−1 − 1K1TK/K]).

3. Obtain a maximum likelihood (ML) estimate of the AR model parameters, Ac,Σc, from
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Figure 3.9 This figure shows the histogram corresponding to one of the scalar

dimensions of νc,t over the entire sequence. Similar results were found

for other dimension as well. These results validate the fact why we

can consider samples of νc,t as i.i.d Gaussian.

{ct} by using the Yule-Walker equations, i.e.

Ac = Rc(1)Rc(0)
−1, where

Rc(0) =
1

N

N−1∑

t=0

ctc
T
t , Rc(1) =

1

N − 1

N−1∑

t=1

ctc
T
t−1

Σc =
1

N − 1

N−1∑

t=1

(ct −Acct−1)(ct −Acct−1)
T

(3.15)

3.2.4.1 Using Multiple Training Sequences

If more than one training sequence is available, one can compute a mean zinit (denoted by

z̃init) by aligning the initial preshapes, w0, of all the sequences. We set z0 for each sequence

as the corresponding w0 aligned to z̃init. These operations make sure that the initial shapes

of all the training sequences are aligned. Now, starting with z0 we can obtain the the shape

speed, ct’s for each sequence. Say, we have a total of q training sequences for a given motion

activity, each with length N . We denote ct’s corresponding to the ith sequence as {cit}, where

i = 1, ..., q. Now, we can estimate Rc(0), Rc(1) as Rc(0) =
1
q

∑q
i=1

1
N

∑N−1
t=0 citc

i
t
T
and Rc(1) =

1
q

∑q
i=1

1
N−1

∑N−1
t=1 citc

i T
t−1. Finally, we compute Ac = Rc(1)Rc(0)

−1 and Σc =
1
q

∑q
i=1Σ

i
c where
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Algorithm 4 2D NSSA: Training with Multiple Training Sequences For a Given Motion

Activity

Input: Pre-shapes corresponding to q training sequences ({wi
t}N−1

t=0 , i = 1, ..., q)

Output: Computed parameters z̃init, Ac,Σc.

1. Compute z̃init = µ(w1
0, w

2
0 , ..., w

q
0, ) where µ(.) is the Procrustes mean shape [28, 79].

2. Compute Ũinit = left.singular.vectors(M(z̃init)) where M(.) is given in (3.8).

3. For each i , i = 1, 2, . . . q

(a) Compute zi0 = z(wi
0, z̃init) using (3.2), compute U i

0 = g(Ũinit, z
i
0) using (3.9) and set

ci0 = 0.

(b) For each t, t = 1, . . . N − 1 do

i. Compute zit , U
i
t , c

i
t using (13),(14).

4. Compute Ac = Rc(1)Rc(0)
−1 where,

Rc(0) =
1
q

∑q
i=1

1
N

∑N−1
t=0 citc

i
t
T
and

Rc(1) =
1
q

∑q
i=1

1
N−1

∑N−1
t=1 citc

i T
t−1

5. Compute Σc =
1
q

1
N−1

∑q
i=1

∑N−1
t=1 (cit −Acc

i
t−1)(c

i
t −Acc

i
t−1)

T

Σi
c =

1
N−1

∑N−1
t=1 (cit−Acc

i
t−1)(c

i
t−Acc

i
t−1)

T . The entire procedure is summarized in Algorithm

4.

3.3 Modeling 3D Shape Sequences

A 3D configuration is represented by a set of K ordered landmarks as a (K × 3) matrix

whose each row corresponds to the (x, y, z) coordinates of the corresponding landmark. In

this section, we discuss the basics of 3D landmark shape analysis [28] and then develop 3D

nonstationary shape activity model (3D-NSSA).
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3.3.1 3D Landmark Shape Analysis Preliminaries

For 3D shapes, the computation of pre-shape (w)K×3 from raw shape (S)K×3 is similar to

the 2D case i.e. first get the centered shape (y)K×3 and then perform size normalization.

y = CKS where, CK is given in (3.2)

w =
y

||y||F
(3.16)

Here, ||.||F denotes Frobenius norm of a matrix. The rotation aligned shape z is obtained

from pre-shape w in the following way. Say, we want to align (w)K×3 w.r.t (µ)K×3. We do

this as :

z = wUVT where,

VΛUT = SV D(µTw) (3.17)

V,U are the left and right singular vectors of the 3× 3 matrix (µTw). It is to be noted that

while performing 3D shape alignment we may have reflections unlike the 2D case. This happens

if det(U) = −1 or det(V) = −1 where det(.) denotes determinant. Thus 3D alignment is a bit

different from 2D since reflections are allowed in 3D but not in 2D.

Another important thing about 3D shape analysis is the vectorization operation [28]. Say,

z is the shape at a given instant which is a (K×3) matrix with columns z1, z2, z3. We vectorize

z to a 3K length vector as follows.

vec3D(z) = (zT1 , z
T

2 , z
T

3 )
T (3.18)

The inverse operation is given by vec−1
3D(.) which forms a K×3 matrix from a 3K length vector.

The tangent space coordinate v(z, µ) of a shape z w.r.t the shape µ is given as follows,

v(z, µ) = [I3K − vec3D(µ)vec3D(µ)T ]vec(z) (3.19)

The inverse map (i.e. from tangent space to shape space) is given as,

z = vec−1
3D((1− vT v)

1
2 vec3D(µ) + v) (3.20)
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3.3.2 3D Nonstationary Shape Activity (3D-NSSA)

To define an NSSA model on 3D shape data, we first obtain the translation and scale

normalized pre-shape sequence {wt} from the 3D configuration sequence {St} using (3.16). As

in the 2D case, we use µ = zt−1 to compute the shape sequence followed by computing the

shape velocity and shape speed vectors in an exactly analogous fashion. The final procedure

can be summarized as follows.

First, we have zinit = z0 = w0 and then we compute the initial tangent space basis matrix

as Uinit = U0 = left.singular.vectors(M3D(z0)) where,

M3D(z) , [I3K − vec(z)vec(z)T ]CK,3D (3.21)

where, CK,3D =









CK 0K×K 0K×K

0K×K CK 0K×K

0K×K 0K×K CK









. Here, 0K×K is a (K×K) matrix with all zero entries

and CK is defined in (3.2). Now starting with z0 and U0, the computation of the corresponding

time sequence of shape speed vectors is done as follows,

zt = wtUVT , where VΛUT = SV D(zTt−1wt) (3.22)

Ut = g(Ut−1, vec3D(zt−1)) (3.23)

ct = UT
t vt = UT

t vec3D(zt) (3.24)

where, g(.) is defined in (3.9). The reason why UT
t vt = UT

t vec3D(zt) is similar to the 2D case

(see discussion below equation (3.14)).

We model ct using a first order AR model (in general this may be replaced by any appro-

priate model for ct). Thus, the forward model for generating a 3D shape sequence is:

ct = Acct−1 + nt, nt ∼ N (0,Σc)

Ut = g(Ut−1, vec3D(zt−1))

zt = vec−1
3D((1 − cTt ct)

1
2 vec3D(zt−1) + Utct) (3.25)

The last equation follows from (3.20) and the fact that vTt vt = (Utct)
TUtct = cTt (U

T
t Ut)ct = cTt ct

and UT
t Ut = I.
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3.3.3 Model Parameter Estimation

The parameter estimation algorithm for the 3D case can be summarized as follows.

1. For all t, obtain {wt} from a given 3D landmark configuration sequence, {St}.

2. For all t, compute {zt} from {wt} using (3.22).

3. For all t, compute {ct} from {zt} using (3.23) and (3.24).

4. Estimate the AR model parameters for ct using the Yule-Walker equations given in (3.15).

3.4 Filtering and Tracking

The goal of filtering is to filter out the noise and get a good estimate of the true landmark

shape from noisy observed landmarks. In our algorithm, the particle filter takes noisy observed

landmark data as input and outputs the Minimum Mean Procrustes-distance Squared Error

(MMPSE) estimate of the true landmark shape. The MMPSE estimate of shape can be derived

by following the Procrustes mean derivation [28] as,

ẑt = argmin
µ

E[d2(zt, µ)|Y1:t]

= argmin
µ

E[||ztz∗t µ− µ||2|Y1:t]

= argmax
µ

µ∗E[ztz
∗
t |Y1:t]µ (3.26)

where E[·|Y1:t] denotes the conditional expectation given Y1:t, d denotes the Procrustes distance

[28] and Y1:t are the observations until t. The last equality follows because z∗t zt = 1 and

µ∗µ = 1. Under a particle filtering setup the MMPSE estimate is computed as, ẑt = principal

eigenvector of
∑Npf

i=1 zitz
i
t
∗
wi
t where Npf denotes number of particles, i denotes the ith particle

and wi
t represents the importance weight corresponding to the ith particle i.e. p(zt|Y1:t) ≈

∑Npf

i=1 wi
tδ(zt − zit). The configuration parameters i.e. scale, translation and rotation are also

estimated in the process of filtering. Apart from removing random additive noise, particle

filtering can also be used to ’clean up’ the effects of occlusion and clutter.

Tracking is used to extract and filter out landmark configurations from a sequence of

images. Filtering plays a very crucial role in the process. In fact, tracking can be considered as



www.manaraa.com

51

observation extraction coupled with filtering. It works as follows. A shape deformation model

(as described in Sec. 3.2.3) predicts the shape at the current instant using the previous shape

estimates. Similarly, scale, translation and rotation models are used to predict their values

as well. These, coupled with the predicted shape, gives the predicted landmark locations (i.e.

predicted configuration) at the current instant. Using these predicted landmark locations in

the current image, the landmarks can be extracted for the current image using any technique,

for e.g. edge detection or optical flow. Our method for doing this is described in Algorithm. 7

and Sec. 3.4.5. Once the observed landmarks are obtained, they are filtered to get a MMPSE

estimate of the true landmark shape and MMSE estimates of scale, rotation and translation.

These estimates are again utilized to extract the observed landmark locations at the next time

instant as described above.

We describe our state transition model and observation model in Sec. 3.4.1 and 4.6. We

develop the PF algorithms for filtering in Sec. 3.4.3 and 3.4.4. The PF-based tracking algorithm

to extract landmarks from video sequences is described in Sec. 3.4.5.

3.4.1 System Model (State Transition Model)

Since the observations are landmark configurations, to extract them, we need to estimate

both the shape and the “motion” (scale, translation and rotation). Thus our state vector is,

Xt = [st, θt, τt, ct, zt, Ut] where st is the logarithm of global scale, θt is the global rotation, τt is

the xy translation, ct is the shape speed vector, zt is the shape and Ut is the basis set spanning

the current tangent space. The shape dynamics model is given in (3.11). It is a second order

model on zt which is equivalent to a first order model on the shape speed ct. We use a first

order model on logarithm of global scale, st, global 2D rotation θt (this typically models the

random motion of camera) and translation τt.

st = αsst−1 + νs,t, νs,t ∼ N (0, σ2
s)

θt = θt−1 + νθ,t, νθ,t ∼ N (0, σ2
θ )

τt = τt−1 + ντ,t, ντ,t ∼ N (0, σ2
τ ) (3.27)

Note that in case of filtering (when landmark observations are already available), translation
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Algorithm 5 PF-Gordon for Landmark Shape Filtering

Initialization: At time t = 0, sample s
(i)
0 ∼ N (s0, σ

2
s), θ

(i)
0 ∼ N (θ0, σ

2
θ), c

(i)
0 = 0, z

(i)
0 = z0 and

U
(i)
0 = U0. Here, i = 1, ..., Npf where, Npf is the number of particles.

For t > 0,

1. Importance sample X
(i)
t ∼ p(Xt|X(i)

t−1) as sit ∼ N (αss
i
t−1, σ

2
s), θit ∼ N (αθθ

i
t−1, σ

2
θ), cit ∼

N (Acc
i
t−1,Σc), U

i
t = g(U i

t−1, z
i
t−1), z

i
t = f(zit−1, U

i
t , c

i
t). i = 1, 2, ..., Npf

2. Weight and Resample. Compute wi
t =

w̃i
t

∑Npf
j=1 w̃

j
t

where, w̃i
t = wi

t−1p(Yt|X i
t) with, p(Yt|X i

t) =

p(Yt|h(sit, θit, zit)) =
∏K

k=1[(1 − p)N ([h(sit, θ
i
t, z

i
t)]k, σ

2
o) + pN (0, 100σ2

o)], ∀i

3. Compute the MMPSE estimate ẑt as the principal eigenvector of
∑Npf

i=1 zitz
i
t

∗
wi

t. Estimate con-

figuration parameters as ŝt =
∑Npf

i=1 wi
ts

i
t and θ̂t =

∑Npf

i=1 wi
tθ

i
t

4. Set t← t+ 1 and go to step 1.

can be normalized for. Since it is a linear process, the form of the observation noise pdf does

not change. But in case of tracking to predict and extract landmarks from image sequences,

translation does need to be tracked to predict where the configuration of landmarks translated

to.

The resulting state transition prior becomes,

p(Xt|Xt−1) = N (αsst−1, σ
2
s)N (θt−1, σ

2
θ)×

N (τt−1, σ
2
τ )N (Acct−1,Σc)×

δ(Ut − g(Ut−1, zt−1))δ(zt − f(zt−1, Ut, ct))

where δ denotes the Dirac delta function and f(zt−1, Ut, ct) , (1 − cTt ct)
1/2zt−1 + Utvec

−1(ct)

and g(.) is defined in (3.9).

3.4.2 Observation Model

There are various ways to extract landmarks from image sequences - e.g. edge detection

followed by extracting the K strongest edges closest to predicted landmark locations or using

the Kanade-Lucas-Tomasi (KLT) Feature Tracker [80] (block optical flow estimation) algorithm

at or around predicted landmark locations. As explained in Sec. 3.4.5 and Algorithm. 7, we

use a modification of KLT for this purpose.
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Figure 3.10 The observation mechanism is demonstrated here. Each observed

landmark can either come from the true landmark location or gen-

erated from a outlier noise due to effects of occlusion and/or clutter.

The configuration of landmarks is obtained from the shape, scale and rotation by the

transformation h(st, θt, zt) = zte
stejθt . The simplest observation model is of the form

Yt = h(st, θt, zt) + wt, wt ∼ N (0, σ2
oI) (3.28)

where wt is a complex Gaussian noise vector. This assumes that there is no background

clutter: each of the K strongest edges or the K KLT-feature points are always generated by

the true landmark location plus some error modeled as Gaussian noise. But this is often a

simplistic model since there is always background clutter that generates false edges or false

KLT-feature matches or there might be missing landmarks due to blur or occlusion. Thus

it may happen that out of the K “observed landmark locations”, some landmark at some

time is actually generated by clutter (e.g. if a true landmark is blurred or occluded, while a

nearby clutter point has a stronger edge). We model this as follows: with a small probability

p, the kth landmark, Yt,k, is generated by a clutter point (model a clutter point location as a

large variance Gaussian or by a uniform), independent of other landmarks. With probability

(1 − p) it is generated by a Gaussian noise-corrupted actual landmark (independent of other

landmarks), i.e.

Yt,k ∼ (1− p)N ([h(st, θt, zt)]k, σ
2
o) + pN (0, 100σ2

o ) (3.29)
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Algorithm 6 PF-EIS for Landmark Shape Filtering

Initialization: At time t = 0, sample s
(i)
0 ∼ N (s0, σ

2
s), θ

(i)
0 ∼ N (θ0, σ

2
θ), c

(i)
0 = 0, z

(i)
0 = z0 and

U
(i)
0 = U0. Here, i = 1, ..., Npf where, Npf is the number of particles.

For t > 0,

1. Importance sample sit ∼ N (αss
i
t−1, σ

2
s), θ

i
t ∼ N (αθθ

i
t−1, σ

2
θ). i = 1, 2, ..., Npf

2. Compute mi
t = argminct L

i(ct) and Σi
IS = [∇2Li(mi

t)]
−1 where Li is defined in (3.31).

3. Importance sample cit ∼ N (mi
t,Σ

i
IS). Compute U i

t = g(U i
t−1, z

i
t−1) and zit = f(zit−1, U

i
t , c

i
t).

4. Compute Importance weights as, wi
t =

w̃i
t

∑Npf
j=1 w̃

j
t

where, w̃i
t = wi

t−1
p(Yt|h(s

i
t,θ

i
t,z

i
t))N (cit;Acc

i
t−1,Σc)

N (cit;m
i
t,Σ

i
IS

)
.

5. Compute the MMPSE estimate ẑt as the principal eigenvector of
∑Npf

i=1 zitz
i
t

∗
wi

t. Resample.

6. Set t← t+ 1 and go to step 1.

The above model has been adapted from the observation model used in Condensation [13].

The resulting observation likelihood term is,

p(Yt|Xt) =

K∏

k=1

(1− p)N ([h(st, θt, zt)]k, σ
2
o) + pN (0, 100σ2

o )

The intuitive idea behind the observation model is shown in Fig. 3.10.

3.4.3 Landmark Shape Tracking : PF with Efficient Importance Sampling

While keeping track of the landmark shapes using a particle filtering approach, we end

up with large dimensional state space (number of landmarks could be a lot e.g. 10 or more).

together with this, as shown in the observation model, we also have to deal with the effects of

occlusion and clutter which gives rises to multimodality in the observation likelihood. Under

these considerations and in light of our discussion in Chapter 2, we go for developing PF-EIS

for landmark shape tracking problem.

3.4.4 PF-Gordon and PF-EIS for our problem

We summarize the basic PF (i.e. PF-Gordon [2]) for landmark shape filtering in Algorithm.

5. The idea of PF-Gordon for landmark shape tracking is demonstrated in Fig. 3.11. In

order to develop the PF-EIS, we follow the steps as explained in Sec. 3.4.3. The choices of

Xt,s and Xt,r under this problem set-up are justified as follows. Since the STP of st, θt is

usually broad (to allow for occasional large camera motion or zoom), we use Xt,s = [st, θt]
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Algorithm 7 Automatic Landmark Extraction over a Sequence of Images

Input: image(t-1), image(t), Ŝt−1 (estimated landmark configuration at t− 1)

Output: {X i
t , w

i
t}, i = 1, 2, ..., Ŝt =

∑Npf

i=1 (z
i
te

sit+jθi
t + τ it )w

i
t (estimated landmark configuration at time

t) where, zt is the shape and est , θt, Tt are the global scale, rotation and translation respectively.

1. For each estimated landmark [Ŝt−1]k, k = 1, 2, . . .K, compute optical flow at a cluster of points
around [Ŝt−1]k and use this to move the points into image(t). Use the centroid of the moved
cluster as the kth observed landmark at time t, [Yt]k. Do this for all landmark points to get Yt

2. Run PF-Gordon using Yt, i.e. implement steps 1 and 2 of Algorithm. 5. But this time, we include
the global translation in the state-space as well.

3. Display the estimated landmarks’ location, Ŝt =
∑Npf

i=1 (z
i
te

sit+jθi
t + τ it )w

i
t (estimated landmark

configuration at time t), set t← t+ 1, and go to step 1.

and Xt,r = [ct, zt, Ut]. Note that for the purpose of importance sampling only st, θt, ct are the

“importance sampling states” since zt, Ut are deterministically computed from ct and Xt−1.

The particles ofXt,s are sampled from its state transition prior, i.e. using the first two equations

of (3.27). Conditioned on the sampled scale and rotation, Xi
t,s, it is much more likely that p∗

is unimodal, i.e. p∗∗,i(ct, Ut, zt) defined below is unimodal

Figure 3.11 The basic particle filtering (i.e. PF-Gordon) idea for landmark shape

tracking.

p∗∗,i(ct, zt, Ut) = ζ p( Yt | h(sit, θit, zt) ) N (ct;Acc
i
t−1,Σc)×

δ(Ut − g(U i
t−1, z

i
t−1))δ(zt − f(zit−1, Ut, ct))

where N (x;µ,Σ) denotes the value of a Gaussian pdf with mean µ and variance Σ computed

at the point x and ζ is a proportionality constant.
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Since the pdfs of Ut, zt, conditioned on ct, Xt−1, are Dirac delta functions, the above

simplifies to:

p∗∗,i = ζ p( Yt | h(sit, θit, f(zit−1, g
i, ct)) ) N (ct;Acc

i
t−1,Σc)×

δ(Ut − gi) δ(zt − f(zit−1, g
i, ct))

, p∗∗,i(ct) δ(Ut − gi) δ(zt − f(zit−1, g
i, ct)) (3.30)

where, gi , g(U i
t−1, z

i
t−1). The importance sampling part of Xt,r is only ct. We compute the

importance density for ct by approximating p∗∗,i(ct) by a Gaussian at its unique mode. The

mode is computed by minimizing Li(ct) = − log p∗∗,i(ct) defined below

Li(ct) = [− log p( Yt | h(sit, θit, f(zit−1, g
i, ct)) )] +

[− logN ( ct;Acc
i
t−1,Σc )] (3.31)

The PF-EIS algorithm for landmark shape tracking is summarized in Algorithm. 6.

Figure 3.12 Automatic landmark extraction and tracking from videos using

NSSA model.

3.4.5 Tracking to Automatically Extract Landmarks

In this section we describe out technique to track and automatically extract landmark

configurations over a sequence of images or a video. The system comprises of a optical-flow

(OF) tracker coupled with filtering. We compute optical flow at a cluster of points around each
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currently estimated landmark location, [Ŝt]k (k denotes kth landmark) and use this to move

the cluster of points into the next frame (frame t+1). The centroid of the moved cluster serves

as the new observation for the kth landmark at t+1. The same thing is done for all landmark

points to get Yt+1 (the vector of observed landmark locations a t + 1). This observation is

fed into the NSSA-based PF which outputs the estimated landmark locations (and estimated

shape) at t + 1. The entire procedure is summarized in Algorithm. 7. For computing the

optical flow we used the code/method developed by [81]. The idea is demonstrated in Fig.

3.12 and Fig. 3.13.

Figure 3.13 In this figure, the optical flow based observation extraction mecha-

nism for automatic landmark extraction is demonstrated.

3.4.6 Change Detection / Abnormal Activity Detection in Video Sequences

In order to sense the change in shape activity model corresponding to an incoming video

sequence, we use our NSSA model based automatic landmark extraction technique coupled

with a Expected (negative) Log-Likelihood (ELL) based change detection statistics [40, 41].

An abnormal activity (suspicious behavior in our case) is defined as a change in the system

model, which could be slow or drastic, and whose parameters are unknown. Given a test

sequence of observations and a shape activity model, we use the change detection statistics

defined in [40]. to detect a change (i.e. detect when observations stop following the given

shape activity model). A change being drastic or slow depends on the system model used in



www.manaraa.com

58

particle filtering. A more general system model can track a lot more changes and hence the

nonstationary shape activity (NSSA) model is expected to do a better job of tracking abnormal

observations than the stationary one. Whenever changed observations get tracked correctly,

the ELL [40, 41] detects the change while if the PF loses track, the tracking error detects the

change.

It is important to note that for abnormality detection, the normal activity needs to be

characterized first. We can either use shape velocity or shape or both to represent normalcy

depending on the practical problem being dealt with. To use shape for detecting abnormality,

we would be required to represent a normal activity by a stationary shape activity model (SSA,

[12]) or by a piecewise stationary shape activity (PSSA) model [41] (whichever is appropriate

for a problem under consideration). We, however, choose to use shape velocity/shape speed

statistics under our nonstationary system model setup.

Figure 3.14 The integrated framework for tracking and change detection.

Since the NSSA model is a generic system model, it is expected to keep tracking (at least

partially) even when the underlying motion activity changes. As long as the tracking error

is under a certain threshold, the ELL statistics can give us a quantitative measure of how

well/badly the observations are following the current system model. Under this assumptions,

the ELL statistics on shape speed tells us how unlikely is the posterior estimate of the shape

speed to have evolved from the prior dynamical model of the same. It is given as follows,

ELL(ct) = Ep(ct|Y1:t)(c
T
t Σ

−1
c ct) ≃

1

N

N∑

i=1

ci Tt Σ−1
c cit (3.32)

In the above equation, the cit serve as the representative of the current motion activity given
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the observations. Thus intuitively, the ELL statistics computes how far the current shape

vectors deviate from their mean corresponding to the current prior model. Hence, if at time t,

ELL(ct) has exceeded its threshold but the tracking error is still below its threshold (PF is still

in track), we declare a change in activity. This can also serve as abnormal activity detection

under the current problem setup. In case the PF looses track, the exploding tracking error

can help us detect changes. It makes sense because PF performance is certain to go down as

the underlying state sequence no longer follows the system model that the PF relies on. More

details on change and abnormality detection can be found in [40, 8]. We use the automatic

landmark extraction/tracking technique developed in our current research and validate the

abnormality detection system for real-life video sequences. In the results section, we use this

technique to detect a change in motion activity for run to jump on CMU Mocap data. The

basic idea of integrating the change detection sytem with PF-based tracker is demonstrated in

Fig. 3.14.

3.5 Model-based Compression of Landmark Shapes

In this section, we discuss the methodology developed for model based compression of 2D

and 3D landmark shapes. We assume that translation and global scale are unimportant and

need not be stored. We are only interested in storing the global rotation (in-plane rotation,

especially for 2D shapes) and the shape change. Rotation is also not needed if it is due to

camera motion, but some part of it may be due to actual rotation of the landmark configuration.

Thus our goal is to take the preshape sequence {wt} and compress it so as to achieve the

minimum possible shape distortion for a given bit budget.

3.5.1 2D NSSA model-based Compression

We began by first computing the differential entropy of the three possible models: NSSA,

SSA and ASM, with model parameters learnt from the data. If the model assumptions are

correct, the differential entropy is proportional to the entropy of the quantized data for small

enough quantization size [82]. We realized that a measure of the average differential entropy
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Algorithm 8 2D Landmark Shape Data Compression/Decompression

Required Inputs: The pre-shape sequence {wt}, Ac at the transmitter side (compression) and {ñt},
{θ̃t}, zinit (i.e. z0), Ac at the receiver side (decompression). Here, x̃ denotes the quantized version of x.

Initialize: z̃0 = w0, Ũ0 = left.singular.vectors(M(z0)), c̃0 = c0 = 0. Computation of M(z0) is
performed as mentioned in (3.8).

For t > 0,

(a) zt = wt
w∗

t z̃t−1

|w∗

t z̃t−1|
, θt = angle(w∗

t z̃t−1) Computing the aligned shape and the alignment angle

(b) Ũt = g(Ũt−1, z̃t−1). Use equation (3.9) for this step. Performing basis alignment

(c) Compute ct = vec(Ũ∗
t zt) Computing shape speed vectors

(d) Compute nt = ct −Acc̃t−1 Computing prediction error under shape speed AR(1) model

(e) Quantize ñt = Quantize(nt), θ̃t = Quantize(θt). Transmit [ñt, θ̃t]

Decompressor (Implemented at each t at the TX end) :

(f) Compute c̃t = Acc̃t−1 + ñt Reconstruct the quantized version of shape speed vectors

(g) Compute Ũt = g(Ũt−1, z̃t−1)

(g) Compute ṽt = Ũtvec
−1(c̃t), z̃t = (1 − ṽ∗t ṽt)

1
2 z̃t−1 + ṽt Reconstruct the quantized shape

(h) Compute w̃t = z̃te
−jθ̃t , w̃RX

t = w̃t Reconstruc translation and size normalized configurations
end
Find pk(α) =

N(ñt,k=α)
Nframes

, the PMF corresponding to the kth dimension of {ñt} for the alphabets

α’s. A Huffman table can thus be constructed for each scalar dimension. Entropy rate per scalar
dimension is given as, Hk =

∑

α pk(α) log2(
1

pk(α)
).

of NSSA was of the order of -250, which is much smaller than that of SSA(-200) or ASM(-

195). This gives a preliminary indication that NSSA will indeed be a better model (if model

assumptions are valid). Since a large part of the global rotation, θt, is often due to camera

motion and hence independent of shape dynamics, we compress it separately from the shape

sequence, zt. Consider the NSSA model described in Sec. 3.2.3. The AR model prediction

error, nt, is assumed to be independent and identically distributed (i.i.d) Gaussian over time.

We show in Fig. 3.9 that this assumption is a valid one for our datasets. Hence we propose

to compute the sequence, {nt} (denoted as νc,t in Sec. 3.2.3), from the shape sequence, {zt},

quantize it and store/transmit the Huffman coded version of quantized nt.

Now, if the above quantization is done in an open-loop fashion - first compute the {nt}

sequence and then quantize it, the reconstruction error at the decompression/receiver end will

increase over time. This is because the quantization error in nt will result in error in the



www.manaraa.com

61

Algorithm 9 3D Landmark Shape Data Compression/Decompression

Required Inputs: The pre-shape sequence {wt}, Ac at the transmitter side (compression) and {ñt},
{θ̃t}, zinit, Ac at the receiver side (decompression). Here, x̃ denotes the quantized version of x.

Initialize: z̃0 = w0 = winit, U0 = left.singular.vectors(M3D(zinit)), c̃0 = c0 = 0. Computation
of M3D(z) is given by the equation (3.21).

For t > 0,

(a) zt = wtUVT where, VΛUT = SV D(z̃Tt−1wt) Computing the aligned shape w.r.t the previous
one

(b) Ũt = g(Ũt−1, vec3D(zt−1)). Use equation (3.9) for this step. Performing basis alignment

(c) Compute ct = ŨT
t vec3D(zt) Computing shape speed vectors

(d) Compute nt = ct −Acc̃t−1 Computing prediction error under shape speed AR(1) model

(e) Quantize ñt = Quantize(nt). Transmit [ñt]

Decompressor (Implemented at each t at the TX end) :

(f) Compute c̃t = Acc̃t−1 + ñt Reconstruct the quantized version of shape speed vectors

(g) Compute Ũt = g(Ũt−1, vec3D(zt−1))

(g) Compute z̃t = vec−1
3D((1− c̃Tt c̃t)

1
2 vec3D(z̃t−1) + Ũtc̃t) Reconstruct the quantized shape

(h) Define, z̃RX
t = z̃t

end
Find pk(α) =

N(ñt,k=α)
Nframes

, the PMF corresponding to the kth dimension of {ñt} for the alphabets

α’s. A Huffman table can thus be constructed for each scalar dimension. Entropy rate per scalar
dimension is given as, Hk =

∑

α pk(α) log2(
1

pk(α)
).

estimate of ct and hence of zt, which in turn will propagate to the next time step - the error

in zt+1 will be both due to error in nt+1 and due to the effect of errors in all past nt’s. This is

a standard problem in all model-based compression schemes.

We use a standard solution to the above standard problem - we adopt a two-level Differential

Pulse Coded Modulation (DPCM) scheme. Thus our encoding scheme involves implementing

the receiver at the compression end itself before computing the next nt, i.e. at each t:

1. Use the quantized version of nt, denoted ñt, to compute c̃t = Acc̃t−1 + ñt

2. Compute the reconstructed shape z̃t using (3.4)

3. Compute Ũt+1 which is the projection matrix for the tangent space perpendicular to z̃t

(and close to Ũt−1) using Gram-Schmidt given in (3.9).

4. Compute ct+1 = vec(Ũ∗
t+1zt+1) and nt+1 = ct+1 −Acc̃t and quantize it.
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The complete stepwise algorithm is summarized in Algorithm 8.

We use simple quantization to encode the rotation angle sequence, θt, although if a Markov

model were assumed on θt then DPCM could be used there as well. We experimented with

both approaches, with negligible difference in performance.

3.5.2 3D NSSA model-based Compression

The 3D landmark shape sequence compression algorithm is very similar to the 2D case

discussed above. Similar to the 2D case, we also use a two-level Differential Pulse Coded

Modulation (DPCM) scheme to avoid reconstruction error propagation. In fact, once we have

the shape velocity coefficients (using either 2D or 3D NSSA) the compression schemes are the

same for 2D and 3D. We just have to make sure that we reconstruct the shapes and perform

the shape alignments using appropriate methodologies (as described in Sec. 3.3). In the 3D

landmark case, we reconstruct the aligned shape sequence only ({zt}) and not the preshapes i.e.

we ignore the rotation information. Hence, we are not required to encode/store the rotation

parameter or the information about UVT for each frame (see equation (3.22)). The complete

stepwise algorithm for 3D NSSA based compression is summarized in Algorithm 9.

3.6 Performance Evaluation and Comparison

In this section, we develop performance evaluation matric for the compression schemes

described earlier. We then compare the compression vs. distortion performances of NSSA

with other methods.

3.6.1 Performance Evaluation Metric

To compare the performance of NSSA-based DPCM, we applied an exactly analogous

scheme to the SSA model and to the ASM model. We varied the number of quantization bits

per unit time per scalar dimension from 4 to 10 and plotted the mean squared distortion of the

preshape against the Huffman-encoded bit rate (R-D plot) per unit time. The Huffman-coded
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bit rate will always be within one bit of the entropy rate [82]. For the 2D case it is defined by,

H(b) =
M∑

k=1

Hb(ñt,k) +Hb(θ) (3.33)

Where, Hb(ñt,k) is the entropy rate for the kth dimension of ñt, given the word-length b. M is

the dimensionality of nt and Hb(θ) is the corresponding entropy rate for θ̃t. For the 3D case,

however, we do not add the entropy corresponding to the rotation parameter (unlike Hb(θ) in

the 2D case). Hb(ñt,k) is computed as,

Hb(ñt,k) =
∑

α

pk(α) log2(
1

pk(α)
) (3.34)

Where, pk(α) =
N(ñt,k=α)
Nframes

, the PMF corresponding to the kth dimension of {ñt} for the alpha-

bets α’s.

The mean squared distortion for the 2D case is defined as,

D =
1

Ntime

Ntime∑

t=1

||wt − w̃RX
t ||2 (3.35)

Where, wt is the original preshape at the transmitter and w̃RX
t is the reconstructed preshape

at time instant t. For the 3D case, we compute the distortion as the error measure between the

true aligned shape zt and it’s reconstructed version at the receiver side i.e. z̃RX
t . We compute

the distortion per unit time and entropy rate (or Huffman-coded bit rate) for each video

sequence and plot their average values over all sequences (a total of 80). The corresponding

results will be discussed in the section to follow.

Note that, in all schemes (NSSA, SSA, ASM), one also needs to accurately quantize and

store the Huffman table, the AR matrix, Ac, the initial shape zinit (or the mean shape µ in

case of SSA or ASM). These will require the same number of bits for all methods and hence

are not compared. Also, this will be a one-time cost and its effect on the total number of bits

will become negligible as the length of the sequence increases.

3.7 Experimental Results

We began by comparing the ability of NSSA to model real-life landmark shape sequences

with that of SSA, ASM and the wrong NSSA model (NSSA-unaligned) [41]. This is discussed
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in Sec. 3.7.1. It was observed that NSSA had much smaller modeling error than all three.

This comparison gave us the first indication that NSSA would provide a much more accu-

rate prior dynamic model for Bayesian filtering or tracking applications, as well as also for

synthesis/extrapolation applications.

Next we simulated multiple realizations of a ”nonstationary shape activity” along with

scale and rotation variations and attempted to track it using three different PF algorithms:

the original PF (PF-Gordon) was compared with PF-Doucet [3] and PF-EIS [15] (described

in Sec. 3.4.3). These comparisons are discussed in Sec. 3.7.2. It was observed that when the

number of available particles is small, PF-EIS has the best performance.

Since most existing work that used SSA or ASM for tracking used PF-Gordon, we retained

this PF for most of our comparisons between NSSA, SSA and ASM. The following four sets of

experiments were done. In Sec. 3.7.3, we demonstrate the superior ability of NSSA-based PF

(PF-Gordon with Npf = 1000 and PF-EIS with Npf = 50) to filter out the landmark shapes

from heavily noise-corrupted and cluttered observed landmark configurations. In Sec. 3.7.4,

we compare the tracking ability of NSSA-based PF with SSA-based PF and ASM-based PF,

i.e. their ability to accurately extract out landmarks from image sequences. Once again NSSA

is found to be significantly superior to SSA and ASM and also to direct landmark extraction

(without any model-based filtering). The use of 3D-NSSA to accurately synthesize new human

activity sequences is discussed in Sec. 3.7.5. In Sec. 3.7.6 we give a preliminary experiment

that demonstrates that NSSA is able to remain in track even when a model change occurs.

The performance evaluation results for 2D/3D landmarks’ shape data compression are given

in Sec. 3.7.7.

3.7.1 Modeling Error Comparison

We used the Carnegie Mellon Motion Capture (CMU Mocap) database [10] for our ex-

periments. Each file in the database had the coordinates of the markers placed at the body

landmark locations (especially the body joints) for successive frames of a specific human mo-

tion activity e.g. running, jumping etc. An example is shown in Fig. 3.21. The corresponding
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(a) Modeling error for 2D shape data (b) Modeling error 3D shape data

Figure 3.15 Fig. 3.15(a) shows the modeling error (ME) for NSSA, ASM and

ASM for a few activities using 2D MOCAP data. It is important to

note that NSSA, without the basis alignment has a very large mod-

eling error. While after the basis alignment is taken into account,

NSSA has much lower ME than SSA and ASM. In Fig. 3.15(b) we

show modeling error(ME) for NSSA, ASM and ASM for a few ac-

tivities using 3D MOCAP data. Again NSSA had much lower ME

compared to that SSA and ASM. That is why the corresponding bar

plot for NSSA modeling error has almost disappeared.

2D and 3D landmark shape sequences were used as the training data for learning the NSSA

(or SSA or ASM) model parameters.

We define modeling error (ME) as the trace of the noise covariance matrix of the AR

modeling error, i.e. ME = trace(Σc), where Σc = E[(ct−Acct−1)(ct−Acct−1)
T ] and ct are the

“aligned” coefficients of shape velocity. We also compute the modeling error when the ct’s are

not aligned, i.e. when Ut is computing using SVD at each t (as in [41]). When computing error

for SSA, ct are the tangent space coefficients of shape (not of shape velocity), i.e. all shapes zt

are projected into a single tangent space at the common mean shape µ. For ASM, modeling

error is still the same but now ct = zt − µ, i.e. the shape space is assumed to be Euclidean.

We computed the modeling error of SSA, ASM and NSSA (unaligned) for various human

actions and compared with that of NSSA. It was found that NSSA has much lower modeling

error than all three. The modeling error bar plots of 2D and 3D shape sequences have been

shown in Fig. 3.15(a), 3.15(b) for a few motion activities.

Modeling error tells us how well we are able to capture the shape deformation dynamics

using the given model. It thus quantifies how well we can predict the shape at a time instant
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given the information from the previous time instant. Thus Lower modeling error will result in

better tracking ability and also a better ability to synthesize a new sequence or to extrapolate

an existing sequence (graphics problems).
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Figure 3.16 In this Figure, we compare the MSE of of estimated configurations

computed using PF-EIS, PF-Doucet and PF-Gordon for simulated

shape sequence. EIS has the smallest MSE (discussed in Sec. 3.7.2).

3.7.2 Comparing PF algorithms

We simulated landmark shape change of a set of K = 5 landmarks (a deforming pentagon)

and tracked it using PF-EIS (Algorithm. 6), PF-Gordon (Algorithm. 5) [2] and PF-Doucet [3]

with Npf = 50 particles. The initial shape, z0, was a regular pentagon. The shape and global

motion change of the configuration followed (3.11), (3.27) with Σc = 0.0025I6, σ
2
s = 0.0001,

σ2
θ = 0.25, Ac = 0.6I6, αs = 0.9. The observations followed (3.29) with σ2

o = 0.04 and p = 0.2.

I6 denotes a 6 × 6 identity matrix. It is to be noted that the state transition prior (STP) of

scale (est) is a log-normal and hence even σ2
s = 0.0001 results in a fairly broad distribution.

Whenever one or more landmarks are generated by clutter, the observation likelihood (OL)

of log-scale (st) is either heavy-tailed with the wrong (outlier) mode or is multimodal. When

many landmarks are generated by clutter, the same happens for θt. This combined with a

broad prior of st, θt, results in multimodal p∗(st, θt). Whenever this happens, most particles of
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PF-Doucet end up sampling from a Gaussian about the wrong mode of p∗(st, θt) or of p
∗(st),

resulting in loss of track. But PF-EIS does not suffer from this problem since it samples from the

prior of st, θt. Also, since the prior of ct is narrow compared to the distance between likelihood

modes, p∗∗,i(ct) is usually unimodal and thus sampling from its Laplace’s approximation is

valid. On the other hand, for small Npf , PF-Gordon often loses track because it samples all

states from the prior, thus resulting in small effective particle size. In Fig. 3.16, the mean

squared error (MSE) plot averaged over 80 Monte Carlo runs is shown. Also see Fig. 3.17

for MOCAP data, where PF-EIS with Npf = 50 particles is able to achieve almost the same

tracking accuracy as PF-Gordon with Npf = 1000.
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Figure 3.17 Filtering noise and clutter corrupted MOCAP data: compar-

ing NSSA, SSA and ASM based PF-Gordon and also NSSA

based PF-EIS. NSSA significantly outperforms SSA and ASM.

NSSA-based PF-EIS with just 50 particles has comparable perfor-

mance to that of 1000 particle NSSA-based PF-Gordon (discussed

in Sec. 3.7.3).

3.7.3 Filtering from Noisy and Cluttered Observations

In this experiment, 2D landmark shape sequences from CMU Mocap database (refer Sec.

3.7.1) were used as the ground truth (shown in Fig. 3.19, top row). We incorporated random

scale variations, additive noise and clutter to the ground truth. The observations were sim-

ulated using (3.29). This experiment helped us to quantitatively compare performance since
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ground truth was available. The filtering mechanism is demonstrated in Fig. 3.18.

Figure 3.18 Sequential filtering of true landmark shapes out of noise observed

set of landmarks.

We used the PF-Gordon (i.e. the basic PF) with Npf = 1000 particles for filtering. Our

primary objective was to compare the performance of NSSA based system model with that of

SSA and ASM. PF-Gordon solely depends on the state transition prior (STP) for importance

sampling and thus its performance heavily relies on the accuracy of the system model. Also,

all past work on SSA or ASM based tracking used PF-Gordon.

We considered two motion activities namely run and jump with K = 16 landmarks. Differ-

ent data sequences were used for training and testing. Our results are shown in Fig. 3.19 (run)

and Fig. 3.20 (jump) and the procrustes distance comparison plots are given in Fig. 3.17.

The landmark locations were fitted with rectangular patches to visualize the body posture at

a given instant. The first row shows the ground truth and also the observation. It can be

seen that the observed landmark locations (represented as + on top of the ground truth) were

severely corrupted with clutter and random noise. Thus, visually, the observed configurations

hardly conform to the human body. But, as shown in the second row of Fig. 3.19, NSSA has

been able to filter out the true shape from those observations with very good accuracy. SSA

(third row) and ASM (fourth row), however, perform poorly in this job. Similar results were
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found for motion activity jump (see Fig. 3.20). In Fig. 3.17, we plot the procrustes distance

between the estimated shape and the true shape at each instant as the quantitative measure

of filtering accuracy. Also note that PF-EIS (with NSSA model) is able to achieve almost the

same accuracy as PF-Gordon (with NSSA model) with as few as Npf = 50 particles.

In case of SSA and ASM, filtering performed around the fixed mean shape ends up gener-

ating shape samples far away from the desired shape space where the original set of deforming

shapes lie. This, in turn, led to their poor performances. But NSSA, on the other hand, does

an excellent job in filtering because of its time varying mean shape assumption. Of course,

we assume that the shape deviations over successive time frames are small enough to make

sure the the current shape is in the neighborhood of the current mean shape (i.e. the previous

shape) for our mathematical treatments to be valid. This is a reasonable assumption for most

of the real-life motion activities.

3.7.4 Tracking and Automatic Landmark Extraction

For automatic landmark extraction and tracking, we used 50 frames of real-life videos of

human activities (shown in Fig. 3.21(run) and Fig. 3.22(jump)). A total of 13 body landmarks

were considered as shown in Fig. 3.22. The body landmarks were: right shoulder, right elbow,

right hand, right hip, right knee, right foot, head, left shoulder, left elbow, left hand, left hip,

left knee, left foot.

For run sequences, the system model was learnt from the hand-marked ground truth data

corresponding to the training database. In case of jump, however, we used the mocap data

itself. We appropriately subsampled the mocap data frames in order to roughly synchronize

them to the video frames. Implementations of Algorithm. 7 using system models based on

based on NSSA, SSA and ASM were compared. Their performances over multiple time frames

are shown in Fig. 3.21 (run). It can be clearly seen that NSSA (top row) performs much better

than SSA (second row) or ASM (third row) in terms of keeping track of the body landmarks.

It is very important to note that filtering and prediction play a very crucial role in the process

of extracting landmark observations. To verify this, we extracted the landmark observations
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purely based on optical flow i.e. starting with the initial locations we used the optical flow

between successive frames to drift the points and thus getting observations over time. This

procedure does not use the knowledge of the state estimates at each instant to decide where

the expected landmark might be while computing the optical flow. As can be seen from Fig.

3.21 (fourth row), quite a few of the observed landmarks in this case were found to get stuck

at wrong locations (due to background interference, occlusion or clutter) and from that point

on they were never in sync with the body movements. In fact, the point of using the state

estimates is to correct the locations of such landmarks and making sure that we do not end up

computing the OF at the wrong regions for getting the landmark location for the next frame.

Next, we test the system with NSSA based system model on the video of a person jumping.

It can be seen in Fig. 3.22 that NSSA did a very good job in terms of tracking the landmarks

over various time frames. It is to be noticed that at frame 15, it loses track of the landmark

corresponding to the right hand. But later, it regains the track (see frame 39, Fig. 3.22).

3.7.5 3D-NSSA Synthesis

Motivated by the drastically small modeling error of 3D-NSSA for human actions (see Fig.

3.15(b)), we attempted to use 3D NSSA for a motion synthesis application. We learnt the

deformation model for 3D body shape of the human body while running from MOCAP data.

The synthesized run sequence using this model is shown in Fig. 3.23. Since there is no ground

truth is this case, we visually verified the systems ability to synthesize run and the system

performance was found to be promising.

3.7.6 Change Detection with NSSA

We did a simple experiment to test the ability of the NSSA-based tracker to detect changes

in activity while still not completely losing track. We used a sequence where a person begins by

running and then leaps (http://mocap.cs.cmu.edu:8080/subjects/49/49_04.avi). Notice

that this is a fairly sudden change. The ELL-based change detection statistic [40] was able

to detect the change to leap, and for sometime after the change also, our tracker did not
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lose track (see Fig. 3.24 - tracking error does not increase until later). More results and

comparison with SSA are shown in [41]. Detailed results and all MATLAB codes can be found

at http://www.public.iastate.edu/~samarjit/pami.html.

3.7.7 Experimental Results : Landmark Shape Compression

We compared the performance of NSSA model-based compression with that of stationary

shape activity (SSA) and active shape model (ASM) and nonstationary ASM (NS-ASM). The

SSA [8, 12] model used a fixed mean shape µ and then defined an AR or ARMA model on the

computed ct, i.e. zt was assumed to be stationary. In our comparisons, we use an AR model

on ct. Thus, SSA computed nt, θt as follows

ct = vec(U(µ)∗[I − µµ∗]zt) = vec(U(µ)∗zt)

nt = ct −Acct−1

θt = angle(w∗
t µ) (3.36)

and then compressed them using an algorithm analogous to Algorithm. 8. Here U(µ) denotes

the orthonormal basis spanning the tangent space at the fixed mean shape µ. On the other

hand, ASM (or PDM)[29] assumed both stationarity and the fact that zt belongs to a Euclidean

space. In ASM, the first equation of (3.36) is replaced by ct = vec(zt − µ) and everything else

is the same as that for SSA.

We also compare with the case when we assume that the shape space is Euclidean, but

define a second order model on zt similar to that of NSSA. We call this “nonstationary ASM”

(NS-ASM). In this case nt is computed as

ct = vec(zt − zt−1)

nt = ct −Acct−1 (3.37)

3.7.8 2D landmark shape data compression

We began by first comparing the differential entropy [82] of the NSSA model with that

of the other models. In each case, the model parameters were learnt for the same dataset.



www.manaraa.com

72

If the model assumptions are correct, the differential entropy is proportional to the entropy

of the quantized data for small enough quantization size [82]. We found that a measure of

the differential entropy averaged over various motion activities corresponding to NSSA was

-250, which was smaller than that of SSA(-200) or ASM(-195) or NS-ASM(-215). This gives

a preliminary indication that NSSA will indeed be a better model for compression (if model

assumptions are valid).

To compare the performance of NSSA-based DPCM with that of existing work, we used a

DPCM based compression algorithm analogous to Algorithm. 8 but using the SSA, ASM or

NS-ASM model instead of the NSSA model. Since the goal is to compare the different models,

we only performed scalar quantization followed by Huffman coding. We varied the number

of quantization bits per unit time per scalar dimension from 4 to 10 and plotted the mean

squared distortion of the preshape against the Huffman-encoded bit rate per unit time. This

is commonly referred to as the Rate-Distortion (RD) plot. The Huffman-coded bit rate will

always be within one bit of the entropy rate of ñt,k [82] which is computed as

H(b) =
M∑

k=1

Hb(ñt,k) +Hb(θ̃t) (3.38)

where Hb(ñt,k) is the entropy rate for the kth dimension of ñt, given the word-length b. M

is the dimensionality of nt and Hb(θ̃t) is the corresponding entropy rate for θ̃t. Our shape

sequence had 16 landmarks and so M = 2 ∗ 16− 4 = 28. The entropy Hb(ñt,k) is computed as,

Hb(ñt,k) =
∑

α

pk(α) log2(
1

pk(α)
) (3.39)

where pk(α) =
N(ñt,k=α)
Nframes

, the probability mass function (PMF) corresponding to the kth di-

mension of {ñt} for the alphabets α’s. Here N(ñt,k = α) denotes the number of times ñt,k is

equal to α for various t.

The mean squared distortion is defined as,

D =
1

Ntime

Ntime∑

t=1

||wt − w̃RX
t ||2 (3.40)

where wt is the original preshape at the transmitter and w̃RX
t is the reconstructed preshape at

time instant t (see step(h) of Algorithm. 8).



www.manaraa.com

73

We used motion capture data from the CMU MOCAP database for our comparisons. The

motion activity sequences used in these experiments were - run, jump, dance etc. A total of 80

different sequences were used. In the encoding process, we tried seven different quantization

word-lengths ranging from 4 to 10 bits per unit time per scalar dimension. For each word-

length, we computed the Huffman coded bit rate (which is within a bit of the average entropy

rate per frame) and the average distortion over all the video sequences. Thus we got the

rate-distortion (R-D) plot of the system. We compare the compression performance of NSSA,

SSA, ASM and NS-ASM using their corresponding RD curves in Fig. 3.25 (left). For similar

Huffman-encoded bit rates, the NSSA based method gave a distortion of the order of 10−5, while

distortions corresponding to SSA and ASM were of the order of 10−3 and 10−2 respectively

and that of NS-ASM was 10−4. A visual comparison between NSSA and ASM decompression

has been shown in Fig. 3.26.

Another measure of the system performance for a specific word-length, b, is the peak signal-

to-noise ratio (PSNR) defined as,

PSNR(b) = 10 log10(
||wt||2
Davg(b)

) = 10 log10(
1

Davg(b)
)

With ||wt|| = 1 by definition, PSNR values for b = 4 were 30 dB for NSSA, 23.5 dB for SSA

and 17.2 dB for ASM respectively.

It is to be noted that, in all schemes (NSSA, SSA, ASM, NS-ASM), one also needs to

accurately quantize and store the Huffman table, the AR matrix, Ac, the initial shape zinit (or

the mean shape µ in case of SSA or ASM). These will require the same number of bits for all

methods and hence are not compared. Also, this will be a one-time cost and its effect on the

total number of bits will become negligible as the length of the sequence increases.

3.7.9 3D landmark shape data compression

For the 3D case, as explained earlier, we only encode the shape sequence and not the

rotation information. We compute the distortion as the error measure between the true aligned

shape zt and its reconstructed version at the receiver side i.e. z̃RX
t . Distortion is computed as

the Frobenius norm of [zt − z̃RX
t ]. We compute the distortion per unit time and the Huffman-



www.manaraa.com

74

coded bit rate for each video sequence and plot their average values over all sequences (a total

of 80) in Fig. 3.25 (right). The distortion using 3D NSSA is of the order of 10−8 to 10−11

which is much smaller than that of SSA (of the order of 10−6), ASM (of the order of 10−5)

and NS-ASM (about 10−7).

3.7.10 Shortcomings of NSSA: Classification

Despite very good performances while tracking/filtering, in its current form, NSSA does

not perform as well for classification. We tried to perform a model based maximum likelihood

classification among various motion activities (eg. run, jump, sit etc.). The input to the clas-

sifier was the time sequence of shape velocity coefficients for NSSA, tangent space coefficients

for SSA, and shape deviation vectors for ASM. The output was the most likely activity to

have generated the sequence. In our preliminary experiments with run, sit, jump and dance

activity sequences, NSSA had a 4% misclassification rate while SSA and ASM had 2.5% and

2% respectively. The reason NSSA does not perform as well as the rest is the same as the

reason it significantly outperforms SSA and ASM for tracking - it is a more generic model for

shape change. It consists of a zero mean random walk model on shape and a zero mean AR

model on shape velocities. The effect of initial shape is lost in a long sequence.

To use NSSA for classification, we should modify the current model and define a nonzero-

mean shape velocity change model. Alternatively, a good idea would be to use NSSA for

tracking, i.e. for extracting landmark shape sequences from video, and then feeding these into

a piecewise SSA [32] or piecewise ASM [31] based classifier.

3.8 Summary

The key contribution of this work is a novel approach to define a generative model for

both 2D and 3D nonstationary landmark shape sequences, which we call nonstationary shape

activity (NSSA). The main idea is to compute the tangent space representation of the current

shape in the tangent space at the previous shape. This can be referred to as the shape

velocity vector since it quantifies the difference between two consecutive shapes projected into
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the tangent space at the first one. The “aligned” shape velocity coefficients (shape speed

vector) are modeled using standard vector time series methods. Applications in filtering,

tracking, synthesis (using 3D-NSSA models) and change detection are demonstrated. Filtering

and tracking are studied in detail and significantly improved performance over related work

is demonstrated. We have also successfully demonstrated the use of the NSSA for model-

based compression of landmark shape sequence data. In addition, the landmark shape based

techniques discussed in this chapter has been extended to steganographic applications for hiding

binary information inside structured shapes like text characters and glyphs 2 (more details in

[83, 84]. A patent has been filed : US Patent No. 12/650,289).

2This work was performed at Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA
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Figure 3.19 Filtering out true shape data from noisy/cluttered observations us-

ing PF-Gordon (motion activity : run). The landmark points (de-

noted by × for ground truth and � for the filter output) are fitted

with rectangular patches to visualize the body posture at a given

time instant. The tracking performances of NSSA, SSA and ASM

are shown over 4 frames. Top row: Ground truth with observations

(+), second row: tracked with NSSA, third row: tracked with SSA

and fourth row: tracked with ASM. It can be clearly seen that NSSA

way outperforms SSA and ASM.
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Figure 3.20 Filtering out true shape data from noisy/cluttered observations us-

ing PF-Gordon (motion activity : jump). The landmark points (de-

noted by × for ground truth and � for the filter output) are fitted

with rectangular patches to visualize the body posture at a given

time instant. The tracking performances of NSSA, SSA and ASM

are shown over 4 frames. Top row: Ground truth with observations

(+), second row: tracked with NSSA, third row: tracked with SSA

and fourth row: tracked with ASM. It can be clearly seen that NSSA

way outperforms SSA and ASM
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Figure 3.21 Tracking landmark configurations over the video of a running se-

quence (discussed in Sec. 3.4.5). Top row: NSSA, second row: SSA

and third row: ASM. It can be clearly seen that NSSA way outper-

forms SSA and ASM. Fourth row: landmark observations extracted

using purely optical flow based approach. It can be seen that the

observed landmark loses posture information gradually over time.

Such observation lead to poor filtering/tracking performance of the

system.
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Figure 3.22 Tracking landmark configurations over the video of a jump sequence

with NSSA based system model (discussed in Sec. 3.4.5). It can

be seen that at frame 15, NSSA lost track of one of the landmarks

(right hand). But after that it regains track of the landmark.
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Figure 3.23 Synthesis of a 3D shape sequence corresponding to motion activity

run. Four frames are shown. The system model was learnt using

3D-NSSA on 3D landmark shape sequences for running. The se-

quence shown above visually resembles a running sequence.
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Figure 3.24 The ELL and tracking error (TE) plot for the shape sequence with

run followed by leap. PF-Gordon was used with NSSA based system

model. The actual activity transition occurred at t = 132. It can be

clearly seen that ELL detected the change. There is distinct spike of

ELL around t = 132. However, the tracker still keeps tracking even

after the change has occurred.
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Figure 3.25 Results from 2D shape data with average distortion in log-scale. It

shows that the distortion for NSSA is of the order of 10−5, whereas

the distortions corresponding to SSA and ASM are of the orders

of 10−3 and 10−2 respectively and that of “nonstationary ASM”

or NS-ASM is of the order of 10−4. A total of 80 motion activity

sequences, which included run, jump, dance etc taken from the CMU

MOCAP database were used for this comparison.
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Figure 3.26 Visual comparison of reconstruction performances of NSSA and

ASM. We demonstrate the original and reconstructed landmark

shapes over four different frames of a video sequence correspond-

ing to the motion activity “Run”. The encoded bit rate was 120

bits/frame. The data set used in these experiments were from the

CMU Mocap database. The blue squares are the original landmarks

and they are fitted with rectangular patches to resemble the human

body that they represent. The red circles correspond to the land-

marks locations for the reconstructed shape. Top row corresponds

to the NSSA based compression and the bottom row corresponds

to that of ASM. As it can be seen that NSSA based compression

scheme can reconstruct the body postures with reasonable accuracy.

ASM, however, has worse performance compared to NSSA in this

regard.
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CHAPTER 4. Visual Tracking Under Illumination Changes

In this chapter, we first give a brief summary of our research contributions and related

works. Then we develop a dynamical model of illumination variations in the scene and then

use efficient particle filters for tracking across illumination changes under occlusion and clutter.

This demonstrates the effectiveness of our tracking algorithms for solving real-world computer

vision problems. Together with this, we also demonstrate the use of change detection algorithm

for tracking across abrupt illumination variations.

4.0.1 Illumination invariant Tracking : Contributions and Related Works

The first contribution of this work [47] is to carefully design PF-MT for visual tracking

across illumination change so that with as few as a 100 particles, we are able to successfully

track on a 10 dimensional space. We demonstrate via exhaustive experiments that with 100

particles PF-MT is able to remain in track while all other PF based approaches and many

other non PF based approaches fail. In this work, we use a simple motion model and a simple

illumination model (taken from [14]). But as we explain below, both of these can be replaced

by more sophisticated models taken from other work. Of course the sophisticated models

may require specific type of imagery, e.g. [48] is a 3D-based approach and will require close

range and high resolution videos, while since our model is simple, it is less restrictive and

can use lower resolution videos such as those that occur in surveillance applications. A second

contribution of this work is to demonstrate the use of the gELL statistic to detect model change

before loss of track and to compensate for the change without ever losing track.

Early work on illumination modeling includes [49, 50, 51]. These methods focus on accu-

rate models of appearance under varying illumination and their utility for object recognition.
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However they typically required an explicit 3-D model of the object, which may not be pos-

sible to obtain from low resolution videos. For tracking, often simpler models are needed.

The problem of tracking in the presence of illumination changes has been handled by different

researchers. Hager and Belhumeur [52] deal with illumination change using the illumination

subspace specific to an individual using her multiple images under varying illumination. In

surveillance scenarios, getting such information for every person may be difficult and thus a

data-independent basis such as the Legendre basis used in [14] is a better idea. Similarly track-

ers that use edge maps are also not a good idea since edge maps of images taken under different

illuminations need not resemble each other [53]. Some other recent approaches to illumination

invariant tracking involve adapting the template over time [54, 55, 56]. Direct adaption of the

template requires careful selection of adaption parameters to avoid problems of drift [57], e.g.

if you adapt when the tracker has latched onto clutter, it will lead to tracking failure. We show

an example of this in Fig. 4.2 (third row). Another class of trackers include mean-shift [58]

based tracking algorithms. It is unclear how an illumination prior can be incorporated in such

cases. Failure of mean shift is shown in Fig. 4.2 (second row).

The work of [14] attempted to address the increased state space dimensionality by treating

the illumination state as a discrete state that can take one of a finite set of possible values.

But this model is very restrictive and for general surveillance applications, where illumination

could vary a lot over the entire sequence (even though frame to frame changes are small) and

one will need the finite set to be quite large. This, in turn, would require a large number

of particles in PF for successful tracking. We demonstrate failure of this approach using 100

particles in Fig. 4.2 (last row).

Some other related work on visual tracking across appearance changes includes [48, 59,

60, 61, 62, 63]. These works use more sophisticated models for appearance change and for

motion, e.g. [48] models the structure, 3D motion and illumination change (both 3D motion

and illumination change contribute to appearance change) while [62] uses an active appearance

model [64] coupled with cylinder head models which model the appearance change due to pose

and illumination variations in an appearance PCA space. For tracking, some of these use a
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PF, e.g. [59, 61, 63], while others use different approaches to find an exact or approximate

maximum a posteriori (MAP) estimate for their models, e.g. [48] uses an alternating mini-

mization approach to find some sort of approximate MAP estimate. The MAP estimate is easy

to compute but it does not always minimize the mean squared error. The reason that [48] and

others do not use a PF, which at least theoretically, in the limit of large enough particles, N ,

will approximate the MMSE estimate, is because their models have fairly large dimensions and

a PF becomes impractically expensive (needs a very large N) for large dimensional problems.

But PF-MT does not suffer from this issue and one can use the models from any of these works

and use a PF-MT tracker, e.g. to use the model of [48], one can treat motion as the “effective

basis” while treating all other dimensions as the “residual space”.

In the next few sections, we develop a dynamical model of illumination variations in the

scene and then use efficient particle filters for tracking across illumination changes under oc-

clusion and clutter.

4.1 State Space Model

In this section, we describe the state space model for a visual tracking system under illu-

mination variations. The system model consists of simple dynamical models for illumination

and motion parameters. The observation model is developed for two different scenarios - when

there is no occlusion in the scene and when there is occlusion over one or more frames. It is to

be noted that, in all of our discussions, we assume a template matching based visual tracking

system.

4.1.1 Notation

We use the following notation. The notation vec(.) refers to the vectorization operator

which operates on a m × n matrix to give vector of dimension mn by cascading the rows.

I denotes the identity matrix. The Hadamard product (the ‘.*’ operation in MATLAB) is

denoted by ⊙. The terms 1 and 0 refer to the column vectors with all entries as 1 and 0

respectively. mean(.) gives the mean value of the entries of a vector. The function round(Z)
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operates on a matrix Z and outputs a matrix with integer entries as round(zi,j) which is the

integer closest to zi,j. The notation N (a;µ,Σ) denotes the value of the Gaussian pdf with mean

µ and covariance Σ computed at a whereas x ∼ N (µ,Σ) implies that the random variable x

is Gaussian distributed with mean µ and covariance Σ. Similarly, the notation U(a; c1, c2)

denotes the value of the uniform density defined over [c1, c2] computed at a.

4.1.2 The Observation Model : No Occlusion

The target object template at time t is denoted as Tt(i, j). The template image serves

as the crude appearance model for the object of interest and can be expressed as Tt(i, j) =

L̃t(i, j)T0(i, j) [14], where L̃t is the unknown illumination image for frame t and T0 is the initial

template. The number of pixels contained in the template is denoted by M . Now L̃t can be

different for each pixel or one can use a parametric model for it. One model that has been

successfully been used in existing work [14] is to approximate L̃t as a linear combination of a

set of Nλ = 2k+1 Legendre basis functions defined over the template. Thus L̃t can be written

as,

L̃t(i, j) =

Nλ−1
∑

n=0

(Λt)nPn(i, j) (4.1)

where

Pn(i, j) =







1 n = 0

pn(i) n = 1, ..., k

pn−k(j) n = k + 1, ..., Nλ − 1

(4.2)

where pn(.) is the Legendre polynomial of nth order and Λt is the vector of Legendre coefficients

at time t with (Λt)n as it’s nth element. We call it the illumination vector. Then the scaled

intensity value at a pixel of the template Tt is computed as,

Tt(i, j) =

Nλ−1∑

n=0

(Λt)nPn(i, j)T0(i, j) (4.3)
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where dim(Λt) = Nλ = 2k + 1. (4.3) can be rewritten as,

vec(Tt) = AΛt,where

A , [vec(T0⊙P0), ..., vec(T0⊙PNλ−1)] (4.4)

is a M ×Nλ matrix.

Now, let Ut = [st τ
h
t τvt ]

T denotes the motion parameter vector at time t w.r.t the initial

frame. It corresponds to a three dimensional motion space encompassing scale st, horizontal

translation τht and vertical translation τvt .

The observation at time t, denoted by Yt, is the current video frame. The observation

equation is given as follows:

Yt(ROI(Ut)) = vec(Tt) + nt = AΛt + nt,

with ROI(Ut) , round([JiUt + i0, JjUt + j0])

Ji , [(i0 − ĩ01) 1 0], Jj , [(j0 − j̃01) 0 1] (4.5)

where nt ∼ N (0, σ2
oI) and the matrix A is defined in (4.4). ROI(Ut) is the set containing pixel

indices for the location of the template in the current frame. The terms i0 and j0 are the M

dimensional vectors containing the x and y coordinates of all the pixels in the initial template

T0, ĩ0 = mean(i0) and j̃0 = mean(j0) denote the center of the initial template. It is to be

noted that the equation above defining ROI(Ut) models the uniform scaling and translation

of the template pixels over time 1.

Thus the state vector is Xt , [Ut; Λt]. We define the observation likelihood as:

p(Yt|Xt) = p(Yt(ROI)|Ut,Λt)p(Yt(ROIc)|Ut,Λt)

=
1√

2πσoM
exp(−||Yt(ROI)−AΛt||2

2σ2
o

)α(Yt(ROIc))

where ROIc denotes the pixels of the image outside ROI and α(.) is a function that does not

depend on Xt, i.e. we assume that the pixels outside the target region are unaffected by the

1If the object is moving towards the camera in such a way that its size is increasing over time, then
Yt(ROI(Ut)) subsamples the (predicted) object region in the current frame to make it the same size as that of
the template.
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target motion or illumination. Thus as a function of Xt,

p(Yt|Xt) ∝ p(Yt(ROI)|Xt) = N (Yt(ROI);AΛt, σ
2
oI) (4.6)

This model assumes a no occlusion scenario i.e. the region of interest (ROI) approximately

contain the target object only. Under occlusion, however, this assumption will not hold and

we discuss that scenario next.

4.1.3 Observation Model : With Occlusion

In case of occlusion, part or all of the ROI will be covered (occluded) by some other

object(s). In the absence of any knowledge about the occluding object(s)’s intensity or pixel

locations, we assume a simple outlier noise model [13]. At any time t, any ROI pixel gets

occluded with probability (1 − θ) independent of the others and in that case its intensity is

uniformly distributed between 0 to 255 independent of all other pixels. Thus we have the

following observation likelihood,

p(Yt|Ut,Λt) ∝ p(Yt(ROI)|Ut,Λt)

= ΠM
n=1[θ N ([Yt(ROI)]n; (AΛt)n, σ

2
o) +

(1−θ)U([Yt(ROI)]n; 0, 255)] (4.7)

where [ ]n denotes the nth element of a vector. Note that the outlier noise term in (4.7) does

not depend on Xt and thus each of the M terms in the product is a heavy-tailed pdf. The

negative log-likelihood for M = 1 is plotted in Fig. 4.1.

4.1.4 The System Model

The state vector consists of the illumination vector and the motion parameters (scale and

translation), i.e.

Xt =






Ut

Λt




 (4.8)

where the motion parameter vector Ut = [st τxt τyt ]
T is defined in the previous section. As

mentioned earlier, the illumination vector Λt ∈ RNλ correspond to the coefficients of the Legn-



www.manaraa.com

87

dre basis function. Thus tracking is performed over a Nλ +3 dimensional motion-illumination

space.

In the absence of specific information about the object motion or about illumination vari-

ation, we assume a simple random walk model on both Ut and Λt i.e.

Ut = Ut−1 + nu, nu ∼ N (0,Σu)

Λt = Λt−1 + nΛ, nΛ ∼ N (0,ΣΛ) (4.9)

where ΣΛ is a Nλ ×Nλ and Σu is a 3× 3 diagonal covariance matrix.

4.2 Illumination PF-MT

As discussed in Chapter 1, owing to the complexity of illumination distribution on the

object, the problem of illumination tracking tends involve large dimensional state space. In

addition, in order to tackle real-life computer vision challenges like occlusion and clutter the

corresponding observation likelihood of the tracker also becomes multimodal. Hence, in this

section, we design Particle Filter with Mode Tracker (PF-MT) for our problem. We use the

efficient particle filtering framework developed in Chapter 2. We develop PF-MT for our

illumination tracking problem as follows. For more details on PF-MT please refer to Chapter

2.

4.2.1 Illumination PF-MT without occlusion model

For ease of understanding, we first discuss the no-occlusion case. In the no occlusion case,

the observation likelihood is unimodal conditioned on U
(i)
t (see observation model (4.6)) and

so Assumption 1 always holds (see chapter 2 for details). Also, the covariance of illumination

change, learnt from training data, is small enough to justify Assumption 2 (IS-MT approxima-

tion, chapter 2). Thus we can use the PF-MT algorithm described in chapter 2 with Xt,s = Ut

and Xt,r = Λt. For our state space model,

p∗∗,i(Λt) = p(Λt|U (i)
t ,Λ

(i)
t−1, Yt)

∝ α

OL
︷ ︸︸ ︷

p(Yt|U (i)
t ,Λt)

STP of Λt
︷ ︸︸ ︷

p(Λt|Λ(i)
t−1) (4.10)
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Figure 4.1 In Fig. 4.1(a) we demonstrate that when the observation likelihood

(OL) mode lies in the basin of attraction of the negative log of the

state transition prior (STP), the resulting p∗∗ is unimodal. In Fig.

4.1(b), it can be seen that when the STP mode is far from the OL

mode and the OL is heavy-tailed, that also gives rise to a unimodal

p∗∗. This happens when the occlusion intensity is significantly dif-

ferent from the object intensity and the modes will be far apart as

shown in the figure. Thus we have a narrow and unimodal p∗∗(Λt).

In both these cases PF-MT with Xt,s = Ut and Xt,r = [Λt] can be

used. In Fig. 4.1(c), we show the case when the OL mode is close to

the STP mode (but not in the basin of attraction of the STP ) and

this gives rise to a multimodal p∗∗. This happens when the intensity

difference between the occluding object and the target object is not

large enough. The modes will be near each other as shown in the fig-

ure. Thus we have a multimodal p∗∗(Λt). This case can still possibly

be handled if we include Λt,1 as part of the “effective basis”, Xt,s.

where the observation likelihood (OL) is defined in (4.6), and the state transition prior (STP)

of Λt is given in (4.9). Thus m
(i)
t can be computed as the minimizer of − log(.) of the RHS of

(4.10). This turns out to be a regularized least squares problem with a closed form solution

given by,

m
(i)
t = Λ

(i)
t−1 + (Σ−1

Λ σ2
o +ATA)−1ATD(i),where

D(i) , [Yt(ROI(U
(i)
t ))−AΛt] (4.11)

where A and Yt(ROI(Ut)) have been defined in (4.4) and (4.5) respectively. Note that the

multiplier of D(i) can be pre-computed, making this a very fast computation.
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Algorithm 10 Illumination PF-MT. Going from πN
t−1|t−1 to πN

t|t(Xt) =
∑N

i=1 w
(i)
t δ(Xt−

X
(i)
t ), X

(i)
t = [U

(i)
t Λ

(i)
t ]

1. Importance Sample (IS) on effective basis : ∀i, sample U
(i)
t = U

(i)
t−1 + nu, nu ∼ N (0,Σu) (see

(4.9)). Use U
(i)
t to compute the corresponding ROI(U

(i)
t ) using (4.5)

2. Mode Tracking (MT) in residual space : Use the current observation to get Yt(ROI(U
(i)
t )) and

compute the mode of p∗∗,i(Λt) as follows,

(a) No occlusion model : Compute m
(i)
t using (4.11)

(b) Occlusion model : Compute m
(i)
t as the mode of p∗∗,i(Λt) by minimizing the − log(.) of

the cost function given in (4.10) where the observation likelihood(OL) is defined by (4.7)
and the state transition prior(STP) is defined by (4.9)

Generate illumination particle as Λ
(i)
t = m

(i)
t

3. Weighting and Resampling: Compute the weights using (4.12) and Resample

4. State Estimation: Reassign the weights to 1
N

and compute X̂t as the average of resampled
particles

5. Increment t and go back to Step 1

With the above importance sampling strategy, the weighting term will be [15]

w
(i)
t =

w̃
(i)
t

∑N
j=1 w̃

(j)
t

, where

w̃
(i)
t = w

(i)
t−1p(Yt|U (i)

t ,Λ
(i)
t )p(Λ

(i)
t |Λ

(i)
t−1) (4.12)

The entire procedure is summarized Algorithm. 10 . Using this method greatly reduces

the weight variance, thus reducing the number of particles required for a certain accuracy (or,

equivalently, improving tracking accuracy when number of particles available is small).

Notice that in this simple no-occlusion case, Rao-Blackwellized Particle Filter (RB-PF

[85, 27]) can also be used, although it will involve storing and updating covariance matrices

for all illumination particles. This can become expensive (and memory-intensive) if the illu-

mination dimension, Nλ, is large. But more importantly, RB-PF cannot be used when we

model occlusions in the observation model. In most practical applications, occlusions can al-

ways occur and hence in practice we always recommend using PF-MT with occlusion which is

developed next.
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4.2.2 PF-MT : Illumination Tracking with Occlusion

Next consider the case with occlusion. Notice that the likelihood defined in (4.7) is the

product of M heavy tailed functions. Its negative log for M = 1 is shown in Fig. 4.1. In

this scenario the posterior will be unimodal if either the likelihood mode lies in the basin of

attraction of the prior mode or if it lies far enough from the prior mode so that the distance

between the two modes is “large” compared to the prior variance. If the distance is somewhere

in between, it will result in a multimodal posterior. We show the three scenarios in Fig. 4.1.

In our application, the prior mode is the target’s illumination at t− 1. The first scenario

above corresponds to the no occlusion case, i.e. when the dominant likelihood mode is the

target’s illumination at the current time plus some Gaussian noise. Since illumination changes

slowly, both the prior and the likelihood modes will be close and hence this results in a

unimodal p∗∗(Λt) (Fig. 4.1(a)). The second scenario above corresponds to occlusion, but

with the occluding object’s intensity (dominant mode of the likelihood) being different enough

from the target’s illumination vector (“different enough” in comparison to the illumination

change variance). Since the illumination change variance is small, this would happen in most

occlusion cases. Thus, the third scenario (occluding object’s intensity being close to the target’s

intensity) is much less likely than the second one.

4.3 Illumination PF-MT with Illumination Model Change

In most cases, the illumination changes very gradually over time and hence the illumination

change variance takes a small value. The exception is when a car or a person transitions from

shadow to sunlight or vice versa or in an indoor scenario if the light bulb is switched off or

on. During these transitions, if we track with a small illumination variance model, the tracker

will gradually lose track. Thus there is a need to detect model change and to assign a high

illumination change variance temporarily during the transition period and to change it back

once the transition is over 2. We propose to detect model change using the recently proposed

2Clearly one cannot keep the illumination variance high all the time since that would make the tracker very
sensitive to observation noise or occlusions (outliers) and would disallow use of the IS-MT approximation (which
helps to track accurately with few particles).
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generalized Expected (negative) Log Likelihood (gELL) statistic [16]. As explained in [16],

gELL is designed to detect model changes before complete loss of track, which is what our

application needs. In fact it works by using the partly tracked part of the change to detect it.

4.3.1 gELL statistic and its computation

Generalized ELL (gELL) is the Kerridge inaccuracy [86] between the posterior at time t,

πt|t and the ∆-step ahead prediction distribution πt|t−∆, i.e.

gELL(t,∆) , −Eπt|t
[−logπt|t−∆(Xt)] (4.13)

where Ep[.] denotes expectation w.r.t pdf p. In practical applications it is not clear how to

choose ∆. One option is to compute the maximum of gELL over all ∆, i.e. to compute

gELL-max(t) , max
∆=1,2,...,t

gELL(t,∆) (4.14)

gELL can be computed for the entire state vector or for a part of it. In this work we compute it

for the illumination state, Λt, since we want to detect illumination model change. To compute

gELL, we need a closed form approximation of πt|t−∆. To get that, we need to approximate

the PF estimate of the posterior at t−∆, πN
t−∆|t−∆(Xt), in closed form. In this work, we just

use a Gaussian density approximation i.e. πN
t−∆|t−∆(Xt) ≈ N (Xt ; µ

N
t−∆|t−∆,Σ

N
t−∆|t−∆) where

the parameters are estimated as the empirical mean and covariance of the weighted particle set

for πN
t−∆|t−∆(Xt) =

∑N
i=1w

(i)
t−∆δ(Xt −X

(i)
t ). With this approximation, the prediction density,

πt|t−∆(Xt), which is obtained by applying the system model of Λt, given in (4.9), ∆ times to

πt−∆|t−∆(Xt), is also Gaussian i.e. πt|t−∆(Xt) ≈ N (Xt ; µN
t|t−∆,Σ

N
t|t−∆) with the mean and

covariance defined in (4.15) below. Thus, gELL is computed as:

gELL(t,∆) ,

N∑

i=1

w
(i)
t (Λ

(i)
t − µN

t|t−∆)
T (ΣN

t|t−∆)
−1(Λ

(i)
t − µN

t|t−∆)
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µN
t|t−∆ = µN

t−∆|t−∆ ,

N∑

i=1

w
(i)
t−∆Λ

(i)
t−∆

ΣN
t|t−∆ , ΣN

t−∆|t−∆ +∆ΣΛ and

ΣN
t−∆|t−∆ ,

N∑

i=1

w
(i)
t−∆(Λ

(i)
t−∆ − µN

t|t−∆)(Λ
(i)
t−∆ − µN

t|t−∆)
T

(4.15)

As explained in [16], the threshold for detecting model change can be set at a value that

is a little above EYt−∆+1:t
[gELL|no change] which is equal to Eπt|t−∆

[− log πt|t−∆(Λt)]. Since

πt|t−∆ is approximated by a Gaussian, this turns out to be equal to the dimension of Λt plus

a constant (which is the same in both the gELL computation and the threshold computation

and hence is ignored).

4.3.2 Illumination PF-MT with Change Detector

We begin by running the Illumination PF-MT algorithm of Algorithm. 10 with ΣΛ given by

the learnt illumination covariance. At each time t, after the weighting step, we compute gELL

as described above. If it exceeds a threshold, then we set ΣΛ to a heuristically selected large

value. During this period the tracker almost exclusively relies on the observations. Assuming

no occlusion during this transition period, the particles will quickly and correctly adapt to the

changed illumination conditions. At this point, the gELL statistic value will reduce. When it

goes below the threshold, we reset ΣΛ to its learnt value.

4.4 Experimental Results

We began by first comparing the tracking performance of our method (Illumination PF-

MT) with other trackers (both PF and non-PF based) for simple no-occlusion scenarios. These

methods used models different from ours. Then we compared Illumination PF-MT with some

other PF algorithms using the same model as ours which include - a) PF-Gordon [2], b)

Auxiliary PF [87], and c) PF-Gordon without an illumination model, both for videos with and

without occlusion. Finally, we evaluated the ability of our algorithm to automatically detect

and adapt to shadow-light transitions.
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We used a set of labeled video sequences for learning the observation model and the dy-

namical models on Λt and Ut. For learning the illumination model, we used Nλ = 7 (i.e. used

Legendre functions up to the order of 3). For all the PF algorithms, we used a fixed particle

size of N = 100. Since most of the real-life trackers would have to deal with occlusions, we

use the occlusion model (4.7) as our generic observation model for most of the experiments,

i.e. we used Algorithm 10 with step 2b (occlusion case).

4.4.1 Face Tracking under Illumination Change without Occlusions

In this experiment, the test data contained no occlusions and we used the observation model

without occlusion given in (4.6). The results are shown in Fig. 4.2. The box corresponds to

the estimate (MMSE estimate in case of PF methods) of the state vector, Ut, given by the

algorithm. The top row shows an individual tracked successfully using Illumination PF-MT

(our method) with 100 particles. The second row shows tracking failure while using mean

shift tracking [58] which is a model free approach. An alternative to using an illumination

model is to adapt the template periodically as discussed in [54, 55, 56]. In our experiments,

we adopted a simple idea for template adaptation, namely updating the template every Tadapt

frames. We show the result while using Tadapt = 5 in the third row. When the background

clutter is similar to the object, this leads to drift and tracking failure. Similar results were

seen for Tadapt = 1, 10 as well (not shown). In the fourth row we demonstrate failure of the

algorithm of [14], which treats the illumination state as a discrete state that could take one of

a finite set of possible pre-learnt values, when using only 100 particles. Some other instances

of face tracking using our system has been shown in Fig. 4.3 and Fig. 4.4.

4.4.2 Face Tracking under Illumination Change and Occlusions

First, we tested Illumination PF-MT for tracking across minor occlusions under variable

lighting conditions. The occlusions were introduced when the person covered his face with

a book for a couple of frames. The lighting conditions variations could be attributed to two

factors - a) the target’s distance from the window and variable ambient lighting coming through
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it, and b) occasional switching off of the light sources inside the room. The tracking results

are shown in Fig. 4.5.

In a second set of experiments, we compared the performance of Illumination PF-MT

with other PF methods while tracking across severe occlusions and under the same variable

illumination conditions as above. The occlusions in these cases were introduced when another

person walks across the camera blocking the target. The visual comparison results are shown

in Fig. 4.6. It can be clearly seen that the Illumination PF-MT (top row) remains in track

before the occlusion and is able to recover from the partial loss of track due to the occlusion.

On the other hand, all the other methods lose track even before the occlusion starts. The

reasons are discussed in detail in the next subsection.

4.4.3 Vehicle Tracking under Illumination Change

The car dataset was generated from a camera observing a road from above as cars approach

an intersection. The illumination variations were due to variation in the ambient lighting

conditions. We compared the tracking performance of Illumination PF-MT (implemented

with the occlusion model) with other methods such as PF-Gordon [2], Auxiliary-PF [87] etc.

The quantitative tracking accuracy plots are given Fig. 4.7. It can be seen that Illumination

PF-MT significantly outperforms the rest. PF-Gordon with illumination model performs the

worst; even worse than the case when we do not have a model for illumination at all. This

can be attributed to the low effective particle size of PF-Gordon [2] which tracks on a 10

dimensional space where as PF-Gordon-without-illumination-model tracks on a 3 dimensional

space. A particle size of 100 was sufficient for PF-MT, because it utilized an efficient importance

sampling technique that sampled over a 3-dimensional effective basis only. PF-Gordon fails

because - 1) it performs importance sampling over 10 dimensions which necessitates large

particle size (much larger than 100) for a reasonable tracking accuracy and 2) it does not use

the current observation for importance sampling and solely relies on the system model. The

use of auxiliary resampling strategy in the Auxiliary PF [87] facilitates a minor performance

improvement but it is still much worse than Illumination PF-MT. The PF with no illumination
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model remains in track for sometime but eventually loses track as the template appearance

changes beyond a certain point.

We then compared the tracking performances of Illumination PF-MT with and without

occlusion model (i.e. using the observation models (4.7) and (4.6) respectively). A simulated

occlusion (simulated by generating i.i.d. uniform(0,255) noise) was introduced at the 12th

frame and removed at 14th frame. Illumination PF-MT without an occlusion model fails in the

presence of occlusion. Illumination PF-MT with an occlusion model, however, keeps tracking

all along. We show the visual tracking comparisons in Fig. 4.8. The top row demonstrate

that Illumination PF-MT with occlusion model maintains tracking across occlusions. However,

Illumination PF-MT without occlusion model fails (second row).

4.4.4 Dealing with Illumination Model Change

Finally, we demonstrate the utility of the change detection based tracking framework. The

car dataset was generated from a camera observing a road from above as cars approach an

intersection and move in and out of shadow. In Fig. 4.9 we show the results of using gELL

and Illumination PF-MT using 100 particles. Around frame 19, when the car starts to move

from sunlight to shadow, the gELL value starts to increase from its sunlight value (see the

gELL plot). When it goes beyond the gELL threshold (computed as explained earlier in Sec.

4.3.1), we set ΣΛ = Σlarge
Λ . We set Σlarge

Λ = ∞ to allow the tracker to completely rely on the

observations. When gELL decreases again, we reset ΣΛ to Σlearnt
Λ . The tracking results are

shown in the first row of Fig. 4.9. If we do not detect the transition and hence do not increase

ΣΛ then the tracker loses track at the transition time. This is shown in the second row.

An important point to make is that if an occlusion occurs during the transition period (i.e.

during model change), tracking would fail. This is because during the transition, we increase

ΣΛ to a large value so that the tracker only relies on the observations for tracking. Thus,

if occlusion occurs, the template will immediately adapt to the occluding object’s intensity

and would not have a way to recover. Another instance of tracking cross drastic illumination

changes is demonstrated on a sequence from CAVIAR dataset in Fig. 4.10.
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4.5 Summary

In this Chapter, we have tackled the problem of visual tracking under variable illumination

as an inference problem in a joint motion-illumination space introduced in [14]. We used the

PF-MT [15] idea to exploit the fact that given the motion vector at time t, the posterior of the

illumination will usually be unimodal and narrow enough to allow us to replace importance

sampling by mode tracking (IS-MT) for illumination. This key step ensures accurate tracking

with much fewer particles than those needed by any other existing PF. We show exhaustive

experiments to demonstrate the superior performance of our algorithm in handling large illu-

mination variations and severe occlusions for both face and vehicle tracking videos. We also

use the recently proposed idea of generalized ELL (gELL) to detect and adapt to changes

in the illumination model and this helps remain in track across lighting to shadow type of

illumination model changes.
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Figure 4.2 Tracking faces across illumination changes. A total of 100 particles

were used in each case except second row. The top row shows a person

being tracked across illumination changes using Illumination PF-MT.

(b) shows the case when using mean shift tracker (c) shows the case

of using an adaptive tracker with adaptation rate set to 5 frames (d)

shows the case of using 6 centroids using the method of Kale and

Jaynes [14].
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t = 5 t = 50 t=80 t=90 t=145

Figure 4.3 An instance of face tracking for surveillance in a subway station.

t = 20 t = 90 t=100 t=110 t=130

Figure 4.4 An instance of face tracking under large illumination variation when

someone switches the lighting conditions in a room.

(a) t=23 (b) t=58 (c) t=70 (d) t=78 (e) t=108

Figure 4.5 Tracking through real-life occlusion along with illumination variations

using Illumination PF-MT. This sequence correspond to a minor oc-

clusion scenario where the face was partially covered with a book for

up to 8 frames.



www.manaraa.com

99

t = 10 t = 28 t=38 t=45 t=51

Figure 4.6 Visual comparison of various methods for face tracking across illumi-

nation changes with occlusion lasting up to 6 frames. Again we used

N = 100 particles. The top row corresponds to Illumination PF-MT

(our method). Second row correspond to the case when no model

for illumination is used. The third row correspond to Full PF with

Auxiliary Resampling (called Auxiliary PF [87]). The fourth row cor-

respond to PF-Gordon or Full PF [2] with standard resampling strat-

egy. It can be seen that Illumination PF-MT outperforms the rest.

It is to be noted that with limited number of particles (N = 100),

PF-Gordon looses track right from the beginning. This is because,

PF-Gordon fails to estimate the illumination vector correctly with

insufficient number of particles.
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Figure 4.7 Performance comparison of various PFs while tracking across illumi-

nation changes for the car sequence. We show the location error from

the ground truth for different particle filters. PF-MT correspond to

Particle Filter with Mode Tracker (i.e. Illumination PF-MT), FUL-

L-PF correspond to PF-Gordon [2], Full-PF-AUX correspond to Full

PF with Auxiliary resampling strategy (Auxiliary-PF [87]). It can

be seen that Illumination PF-MT outperforms the rest. It is to be

noted that Auxiliary-PF has some negligible performance improve-

ment over PF-Gordon with standard resampling strategy; but it is

far worse than Illumination PF-MT. In all of these experiments we

used N = 100 particles.

t = 2 t = 12 t = 14 t = 16 t = 22

Figure 4.8 In this Figure, we compare visual tracking performances of Illumina-

tion PF-MT with and without occlusion model (i.e. using the obser-

vation models (4.7) and (4.6) respectively). The top row demonstrate

that Illumination PF-MT with occlusion model maintains tracking

across simulated occlusion lasting up to 3 frames (frame 12 through

14). However, the lack of an occlusion model leads to tracking failure

at the event of an occlusion (second row).
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Figure 4.9 This Figure shows the results using gELL based change detection

statistics. It can be see that the tracker can track through drastic il-

lumination changes. The top row demonstrates that we are able track

through illumination model changes when the car moves from sunlight

to shadow area. During the transition from sunlight to shadow area

(around frame 19), the gELL value goes above threshold indicating a

model change (see gELL plot in the top row). If we do not detect the

transition and increase ΣΛ then, tracker fails (second row).

t = 20 t = 30 t=40 t=60 t=90

Figure 4.10 An instance of tracking cross drastic illumination changes is demon-

strated on a sequence from CAVIAR dataset.
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CHAPTER 5. Particle Filtered Modified Compressive Sensing

In this chapter, we propose a novel algorithm for recursive estimation of a sparse signal se-

quence. In our method, the idea of recently proposed regularized modified compressive sensing

(reg-mod-cs) is merged with sequential Monte Carlo techniques like Particle Filtering. Reg-

mod-CS facilitates sequential reconstruction of the sparse signal at each instant, provided a

partial knowledge of the support and the signal estimate on that support at the previous in-

stant. We call it Particle Filtered Modified Compressive Sensing or PaFiMoCS. The sequential

Monte Carlo step allows the system to render various possibilities of the current support and

choose the one which is most likely given the current observations. The algorithm is similar in

spirit to Particle Filter with Mode Tracker (PF-MT), where the support can be considered to

be the effective basis whereas the signal values on the current support can be considered to be

the residual space; the difference being the fact that in our algorithm, the mode tracking step is

replaced by the reg-mod-CS for each particle. We compare our algorithm with other techniques

like traditional particle filtering [2, 3], modified compressed sensing [17], regularized-modified

CS without PF, compressive sensing (non-sequential static case)[71, 72], weighted l1 [76] and

PF-MT (support particles being independent of observation and MT replaced by reg-modCS).

In our experiments, we demonstrate with simulated sparse signal sequences that our PaFiMoCS

algorithm outperforms all the other methods when it comes to sequential reconstruction from

a small number of random linear measurements.

5.1 Motivation

Our primary goal is causal and recursive reconstruction of a time sequence of sparse signals.

We assume a slowly changing sparsity pattern over time. Also, we want our algorithm to use
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as few linear measurements at each time as possible. The “recursive” aspect of the algorithm is

important i.e. use current measurements and previous reconstruction to get current reconstruc-

tion. Potential applications of such an algorithm could be realtime dynamic MRI, single-pixel

imaging etc. with faster acquisition(fewer measurements) and faster reconstruction(recursive).

5.1.1 Related Works

As far as sparse reconstruction is concerned, many practical approaches (polynomial com-

plexity in signal dimension) have been proposed recent years which include greedy methods

like Orthogonal Matching Pursuit [66, 67], CoSaMP[68] and also convex relaxation approaches,

e.g. Basis Pursuit(BP)[69], Basis Pursuit De-Noising(BPDN) [69, 70] to name a few. Some

related works from Compressed Sensing (CS) literature include [71, 72]. Sequential sparse

signal reconstruction with partial knowledge of the support was proposed in [17, 18]. But that

relies on slow support changes and do not use any dynamical model on the sparsity pattern

change. Some other related work on sequential sparse reconstruction include Kalman Filtered

Compressive Sensing [73] and sequential compressed sensing in sparse dynamical systems [74],

[75]. Some other approaches include static approach like weighted l-1 [76] and static Bayesian

approaches - [77, 78].

5.1.2 Sparse Reconstruction

Say, we want to reconstruct a sparse signal x, with support N , from y := Φx, when M =

length(y) < d = length(x). This problem can be solved under certain conditions [71, 72] if we

can find the sparsest vector satisfying y = Φx. The solution can be found via exhaustive search;

but that leads to exponential complexity. Many practical approaches (polynomial complexity

in d) have been proposed in recent years to solve this problem [68, 72, 71, 78, 69, 70].

Now, consider the problem of sparse reconstruction with partly known support. Say, we

want to reconstruct a sparse signal, x, with support, N , from the observation y := Φx, given

partial but partly erroneous support “knowledge”: T . Rewrite N := support(x) as N =

T ∪ ∆ \ ∆e. Here, ∆ := N \ T : misses in T (unknown) and ∆e := T \ N : extras in T
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(unknown). If N = T ∪∆, above problem is equivalent to finding the signal that is sparsest on

T c such that data constraint is satisfied. Modified-CS [17, 18] attempts to solve the problem

as follows,

min
β
||(β)T c ||1 s.t. y = Φβ

Exact reconstruction conditions for modCS are much weaker than that of CS when |∆| << |N |

and |∆e| << |N |.

5.2 Problem Formulation and Notation

Say, {xt}t≥0 is a sparse signal sequence with xt ∈ Rd and d << K, ∀t = 0, 1, . . . where K

is the number of non-zero entries in xt. The observations {yt}t≥0, yt ∈ RM are generated from

the following observation model,

yt = Φxt + nt (5.1)

where Φ is a M×d random matrix with entries as zero-mean i.i.d Gaussian and the observation

noise is normal distributed as nt ∼ N (0,Σo). Under this set up, our primary objective is to

sequentially reconstruct the signal xt from the observations. In order to do that we develop

a recursive algorithm which causally reconstructs the signal xt from the observation yt and

signal estimates from the previous instant. Also, it is assumed that the sparsity pattern of

xt follows a certain dynamical model as described below. But first, we give some of the basic

notations that we use in the sections to follow.

Denote the sparse signal at time t as xt. Define the support of the signal xt as, Nt =

{i : (xt)i 6= 0}, (xt)i , ith component of xt. (xt)Nt denotes a vector comprising of the

components of xt corresponding to the indices belonging to the set Nt. The term N c
t is given

as, N c
t = U \Nt where U = [1, ..., d] with ‘d′ being the dimension of xt. The symbol ′\′ denotes

set minus. While going from t− 1 to t, the set of new elements being added to the support is

denoted as At, whereas the set of deleted elements is denoted as Rt. Thus At = Nt \Nt−1 and

Rt = Nt−1 \Nt. The function dim(.) gives the dimension of a vector. We define the state of
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the system at t as : Xt = [xt, Nt]. Next, we describe the generative model for the sparse signal

sequence.

5.2.1 Signal Dynamics : The Generative Model

The generative model for the sparse signal sequence is given as follows.

1 At t = 0, start with some N0 with dim(N0) << d. Get x0 as follows,

(x0)N0 = ν0, ν0 ∼ N (m0,Σ0)

(x0)Nc
0
= 0

Thus for t = 0, obtain X0 = [x0, N0].

2 For t > 0 compute,

Nt = (Nt−1 ∪At) \Rt

where the sets At and Rt are generated as follows. Now, various elements in At and Rt

are assigned as,

At ∼ Unifp(N
c
t−1)

Rt ∼ Unifp(N
∗
t−1)

with N∗
t−1 = {j : |(xt−1)j| < ∆, j ∈ Nt−1} (5.2)

where p << |Nt−1| and ∆ is a heuristically chosen threshold. Finally, generate the signal

xt as,

(xt)Nt = (xt−1)Nt + ν, where, ν ∼ N (0,Σν)

(xt)Nc
t
= 0

Thus, for t > 0 get Xt = [xt, Nt]

3 Set t← t+ 1 and go to step 2.

This dynamical model on xt and in turnXt, serves as the system model in a tracking framework.

Further details on this dynamical model will be explored when we describe our algorithm. The

signal dynamics is demonstrated in Fig. 5.1
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Figure 5.1 The dynamical model corresponding to the sparse signal sequence.

5.3 Signal Reconstruction : Tracking

In this section, we discuss several algorithms for estimating xt at each instant form the

observations yt. The key question here is : given a Markov model on slow support change, and

on slow nonzero signal value change, what is the “best” way to use it? One idea is Particle

Filtering(PF) framework i.e. sequential importance sampling from the dynamic prior model

for MAP estimates of the support and the signal.

5.3.1 Sequential Monte Carlo : PF

Basically, we are in search of an optimal estimator of xt under the above problem formu-

lation. One idea could be to get the Maximum Aposterior Probability(MAP) estimate of the

signal (i.e. the one which maximizes p(Xt|y1:t)). Particle Filtering (PF) gives an approximate

Bayesian inference of Xt under the setup. It is to be noted that form the dynamical model de-

scribed above, it can be shown that p(Xt|Xt−1) = p(xt|xt−1, Nt)p(Nt|Nt−1, xt−1) which means

that the PF can render various possibilities of the support and the signal values (i.e Impor-

tance Sampling or IS ) and assign importance weights based on the OL i.e. p(Yt|Xt). Then

the MAP estimate becomes the importance sample with highest importance weight. The basic

PF algorithm under this setup is given in Algorithm. 11. A mode-tracking (MT) version of

the PF with a modified CS step is given in Algorithm. 12. This does not use the observations
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Algorithm 11 PF : Recursive Estimation of Xt = [Nt, xt]

At t = 0, N
(i)
0 = N0 and x

(i)
t = x̂0, for i = 1, 2, ..., NPF

At each time t > 0, for i = 1, 2, ..., NPF

(a) Imp. Sample on support : A
(i)
t ∼ Unifp(N

(i) c
t−1 ) and R

(i)
t ∼ Unifp(N

(i) ∗
t−1 ). Get N

(i)
t =

(N
(i)
t−1 ∪ A

(i)
t ) \R(i)

t and define N
(i)
t , T

(b) Imp. Sample on signal value : x
(i)
t : (x

(i)
t )T c = 0, x

(i)
T ∼ N ((x

(i)
t−1)T ,Σν)

(c) Assign importance weights :

w
(i)
t ∝ p(yt|Xt) ∝ exp(− 1

2 (yt − Φx
(i)
t )TΣ−1

o (yt − Φx
(i)
t ))

(d) MAP estimate : x̂t = x
(i)
t such that i = argmaxiw

(i)
t

(e) Resample and move to t = t+ 1

for generating importance samples of the support. As we shall see that the support error for

these type of methods accumulate over time, making them unstable and impractical.

5.3.2 CS based reconstruction : Mod-CS,Reg-mod-CS, Weighted l1

Modified Compressive Sensing or mod-CS [17] takes a sequential approach to compressed

sensing for recursive estimation of sparse signals. It has been shown in [17] that with partial

knowledge of the current supportNt, the sparse signal xt can be reconstructed with fewer num-

ber(compared to the traditional CS) of measurements by solving the following L1-minimization

problem. For the noisy observation case, it becomes as modified BPDN [17].

x̂t = argmin
x
||xT c ||1 + ||yt −Ax||22 (5.3)

where T is the prior knowledge of the support of xt. Generally, we can use previous estimate of

the support as the predicted current support i.e. T = N̂t−1 where N̂t−1 = {i : |(x̂t−1)i| > ∆}.

The above algorithm works when there is slow change of support i.e. dim(At) + dim(Rt) <<

dim(Nt) or in other words, T is a reasonably close estimate of Nt.

Under large observation noise, further constraints can be put in the above optimization

problem to do a better reconstruction. Regularized-modified-CS does exactly that. It assumes
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Algorithm 12 PF-MT : Recursive Estimation of Xt = [Nt, xt]

At t = 0, N
(i)
0 = N0 and x

(i)
t = x̂0, for i = 1, 2, ..., NPF

At each time t > 0, for i = 1, 2, ..., NPF

(a) Imp. Sample on support : A
(i)
t ∼ Unifp(N

(i) c
t−1 ) and R

(i)
t ∼ Unifp(N

(i) ∗
t−1 ). Get N

(i)
t =

(N
(i)
t−1 ∪ A

(i)
t ) \R(i)

t and define N
(i)
t , T

(b) Mode Track on non-zero signal values :

x
(i)
t = argminx λ||(x − x

(i)
t−1)T ||22 + γ||xT c ||1 + ||yt − Φx||22

(c) Assign appropriate importance weights and resample

(d) MAP estimate : output maximum weight particle

that the signal values in the known part of the support changes slowly over time (which is

a reasonable assumption for many practical applications) and the corresponding optimization

problem is modified as,

x̂t = argmin
x

λ||xT c ||1 + γ||(xt)T − (x̂t−1)T ||22 + ||yt −Ax||22

(5.4)

where the parameters λ and γ are chosen appropriately (for details see [17, 18]). Another

approach called the weighted l-1 proposed by [76] solves the following problem,

x̂t = argmin
x

γ||xT c ||1 + γ′||xT ||+ ||yt − Φx||22

It is important to note that for both mod-CS and regularized mod-CS, the reconstruction

performance largely relies on how good the current support estimate is. As mentioned earlier,

if it is close enough to the true support, the algorithms works well as expected. But, in case

there happens to be a large support change associated with successive time instants, then N̂t−1

is no longer close to Nt and hence, the reconstruction performance degrades. Now, in order

to ensure a good reconstruction accuracy, our ultimate goal would be to predict the current

support which is as close to Nt as possible. This brings us to our sequential Monte Carlo based

approach to this problem, which we call Particle Filtered mod-CS (PaFiMoCS). We describe

it in the section to follow.
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5.3.3 Particle Filtered Modified CS(PaFiMoCS)

The primary goal of PaFiMoCS is to facilitate the reg-modCS algorithm with a reasonably

good estimate of the true support. In all of the previous works on sequential compressive

sensing, researchers used the previous support estimate as the current predicted support. But,

as stated above, this heuristic can take a severe beating when there happens to be a large

support change over successive time instants. PaFiMoCS, precisely, attacks this problem.

It leverages from the fact that we can do a better job in support prediction by assuming a

dynamical model on the support changes. Now, even if there happens to be a large support

change, we still have a better handle of the situation than just heuristically using the previous

support estimate for the prediction.

A dynamical model on sparsity pattern change is a reasonable assumption as long as it is

generic in nature. The dynamical model on support change used by PaFiMoCS is described

in Sec. 5.2.1. Let us have a closer look at the dynamics of support change or sparsity pattern

change of xt. Basically, the model captures the statistical mechanism of going from Nt−1 to

Nt. Thus, it can also serve as a predictive model for Nt given Nt−1. As stated in the previous

section, Nt = (Nt−1∪At)\Rt where At and Rt are the set of indices corresponding to addition

and deletion respectively. Now, the generic nature of the dynamical model would depend on

how the addition and deletion sets are chosen over time. Without the loss of generality, our

model used (5.2),

At ∼ Unifp(N
c
t−1), Rt ∼ Unifp(N

∗
t−1)

with N∗
t−1 = {j : |(xt−1)j | < ∆, j ∈ Nt−1}

which is quite true in reality. The first equation above comes from the fact that new additions

to the support can come anywhere within N c
t . The second equation revolves around the fact

that whenever a component of the support is going to be deleted, it is very likely that it would

have a small signal amplitude corresponding to that component. In other words, no component

of the support, with ‘significant’ signal amplitude, gets abruptly deleted from the support. If

any component were to go, it fades away slowly or gradually rather than abruptly. This
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assumption is quite practical for signals evolved from natural processes for which continuity is

an inherent characteristics.

PaFiMoCS is developed based on the dynamical model for support change as well as dy-

namical model on signal value change on the known part of the support (Sec. 5.2.1). As a

first step towards developing our algorithm, we observe that the dimension of N c
t could be

quite large compared to dim(At). Now, there could be dim(Nc
t )Cdim(At) possible choices for At.

Similarly, there are several possible choices for Rt as well. Jointly, they need to represent the

true addition and deletion sets with maximum possible accuracy. This led us to the use of

sequential Monte Carlo techniques for solving this problem. These methods have been pre-

dominantly used in the Particle Filtering literature. Here, the hope is that for a large enough

number of samples, at least one of the candidate samples would be very close to the actual

addition and deletion set. The basic idea of our approach is as follows.

At each time instant, we generate several realizations (i.e. particles) of At and Rt. This is

done using the corresponding support particle from the previous instant (i.e. Nt−1). Then the

current support particle corresponding to Nt is generated(5.2). This predicted support, along

with previous signal particle is used to perform a reg-mod-CS to generate an estimate for the

current signal (this is done for each particle). The support particle is then re-generated form

the signal by magnitude thresholding. This important step corrects for any residual support

error in the original support particle. Hence, we end up with several realizations of the current

support and corresponding signal estimates, each of which, is a candidate of being the best

‘guess’ about the true support and the signal at the current time instant. How do we choose

the best one ? - we use importance weighting step used in particle filters for assigning favorable

particles. Each particle i.e. X
(i)
t = [N

(i)
t x

(i)
t ] is assigned an importance weight similar to a

particle filter and the one with maximum weight is used as the current state estimate. This

basically boils down to a MAP estimate of the support and the signal given the observations

up to the current instant. In fact, PaFiMoCS can be treated as a variant of the Particle

Filter with Mode-Tracking (PF-MT [15]) with support Nt as the effective basis and xt as the

residual part. After the importance weighting step, we resample the particles, move on to the
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next instant and repeat the whole process for the next time instant. The entire procedure is

summarized in Algorithm. 13 and the various steps associated with it is demonstrated in Fig.

5.2.

Figure 5.2 The PaFiMoCS algorithm : block diagram for various steps involved.

It is important to note that although we use a similar importance weighting step as PF-

MT, there is a slight difference between our algorithm and PF-MT. In our algorithm, unlike

PF-MT, we actually recompute the effective basis (i.e N
(i)
t ) from the importance sample of

the residual part i.e. x
(i)
t . This step is essential in our algorithm because reg-modCS step

corrects if there happens to be a small error between true Nt and N
(i)
t . Thus the re-estimated

support tends to be more accurate than the one generated by the importance sampling step.

Otherwise, this error might accumulate over time and lead to an unstable algorithm with

exploding reconstruction error (see performance plot of PF-MT).

5.4 Experimental Results and Discussion

We tested our algorithm on a simulated sequence of sparse signals. The dynamical model

described in Sec. 5.2.1 was used for generating a sequence of length T = 20. The signal

dimension was set at dim(xt) = d = 200 with sparsity K = dim(Nt) = 20 (i.e. 10% of the

signal dimension). The initial signal (t = 0) was generated using N0 = {10, 15, 20, . . . , 105} and
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Figure 5.3 Performance comparison plots. We compute the Normalized Mean

Squared Error for all the methods and compared them over 50 Monte

Carlo runs. It can be seen that PaFiMoCS has the best performance

among all the methods.

m0 = 5 ∗ 120 and Σ0 = 3 ∗ I20 where 1k is a k-dimensional column vector with all entries as 1

and Ik is a k×k identity matrix. We considered two additions and two deletions over successive

time instants i.e. p = 2 or dim(At) = 2 and dim(Rt) = 2. The parameter Σν corresponding to

the dynamics of signal values was set to be I20. The entries on the observation matrix Φ was

generated from a standard normal distribution with M = 50 (25% of the signal dimension).

The observation noise was generated from a multivariate standard normal distribution i.e.

N (0, I) or σ2
o = 1 for each dimension. Under all the above parameter settings, we simulated

a 200 dimensional, 20-sparse signal sequence {xt} and generated corresponding observation

vectors {yt}. These observations are fed to the various reconstruction algorithms to study

their reconstruction performances.

We compared the reconstruction performances of seven different methods including the

basic particle filter, traditional compressed sensing, modified/regularized modified compressed

sensing without sequential Monte Carlo sampling, weighted l-1, PF-MT and finally PaFiMoCS.

For simplicity, it was assumed that we have a perfect knowledge of the initial state of the

system i.e. X̂0 = X0. For regularized modCS the parameters λ and γ were set at 0.1 and

0.5 respectively. For basic particle filter and PaFiMoCS the number of particle used was
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NPF = 100. The performance of the algorithms were compared by computing the normalized

mean-squared reconstruction error (NMSE) i.e. E(||xt−x̂t||2)
E(||xt||2)

for t = 0, ..., 20. The expectations

were computed over 50 Monte Carlo runs of each algorithm. The corresponding NMSE plots

for various algorithms are shown in Fig. 5.3. The comparison plots for normalized support

estimation error is shown in Fig. 5.4. It can be seen that PaFiMoCS has the best performance

among all the algorithms. This can be attributed to the particle filter based importance

sampling step which allowed the algorithm to utilize a very accurate estimate of the supports

under a reg-modCS setup, which, further corrected the residual error in the support estimate.

The re-computation of the support for each particle made sure that each support particle

reflects the support error correction after the reg-modCS step. That is why this algorithm

has a low and stable NMSE of the order of 10−2. The other variant, PF-MT which does not

recompute the support for each particle (more similar to a PF-MT approach) gradually loses

track of the signal as the support error accumulates over time. Other algorithms like mod-CS,

reg-mod-CS and weighted l-1 without the importance sampling step, performs worse as they

do not have a support prediction as good as PaFiMoCS (remember that all of them used the

previous support estimate as the current predicted support). Traditional compressed sensing

fails with 25% observations as it does not utilize the dynamics of sparsity pattern change as

well as the constraints on the signal value changes. Basic particle filter primarily fails due to

the lack of a mechanism to utilize the sparsity of the underlying signal.

Thus it turns out that by facilitating a regularized compressed sensing approach with a

good support estimate from a PF framework, we can actually come up with a very efficient

algorithm for sequential reconstruction of sparse signals from highly undersampled random

linear measurements.

5.5 Summary

In this final Chapter, we have proposed particle filtered modified compressed sensing(PaFiMoCS)

for sequential estimation (i.e. tracking) of spars signals from highly undersampled measure-

ments. This algorithm essentially merges the ideas of compressive sensing and particle filter-
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Figure 5.4 Normalized support estimation error comparison for various methods.

It can be seen that PaFiMoCS has the best performance among all.

ing. The basic idea is to utilize recently proposed reg-modCS idea by providing it with a ‘close

enough’ prediction of the support. This prediction step is carried out by sequential importance

sampling technique used is particle filtering literature. The key difference between PaFiMoCS

and other sequential CS based approaches is that it uses dynamical models on the support

change as well as signal value change on the known part of the support. It is demonstrated

with simulation experiments that PaFiMoCS performs better than other algorithms (both CS

and non-CS type) which do not utilize the importance sampling step for support prediction.

As a part of future research, this technique can be used in many practical scenarios where PF-

MT [15] is suitable but the residual space has a slowly varying sparsity pattern over time. For

example - gradual illumination variations in a scene or slowly moving occlusion in a template

based tracking framework. More details to follow in the next chapter.

5.6 Appendix

For the ideal case with optimal importance sampling density [3] we have,

wt ∝
p(yt|Xt)p(Xt|Xt−1)

p(Xt|Xt−1, yt)
(5.6)
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Now, instead of the optimal density, we sample Xt from a density π(.), which approximates

the optimal importance density p(Xt|Xt−1, yt) as,

p(Xt|Xt−1, yt) = p(xt, Nt|xt−1, Nt−1, yt)

= p(Nt|xt−1, Nt−1, yt)p(xt|Nt, Nt−1, xt−1, yt)

≈ p(Nt|Nt−1, xt−1)π
∗(xt|Nt, xt−1, yt) (5.7)

(5.8)

Or, π(Xt|Xt−1, yt) , p(Nt|Nt−1, xt−1)π
∗(xt|Nt, xt−1, yt). Also, the state transition prior can

be written as,

p(Xt|Xt−1) = p(xt|xt−1, Nt, Nt−1)p(Nt|Nt−1, xt−1)

= p(xt|xt−1, Nt)p(Nt|Nt−1, xt−1) (5.9)

Substituting (5.7) and (5.9) in (5.6),

wt ∝
p(yt|xt)p(xt|xt−1, Nt)

π∗(xt|Nt, xt−1, yt)

Now, our heuristic assumption is that xt has been sampled from a unimodal distribution π∗(.)

(use mode as the importance sample, PF-MT style). Or, x
(i)
t is the mode of − log(π∗(.)) (might

not be accurate) i.e. − log(π∗(.)) ≈ λ||xt − xt−1||22 + γ||(xNc
t
||1 + ||yt−Axt||22) +Const. Hence,

a reasonable estimate for π∗(xt|Nt, xt−1, yt), correct up to a proportionality constant can be

given as,

π∗(xt|Nt, xt−1, yt) ∝ exp[−(λ||(xt − xt−1)Nt ||22 + γ||(xt)Nc
t
||1 + ||yt − Φxt||22)]
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Algorithm 13 PaFiMoCS: Tracking Algorithm

Goal: From the observations {yt}Tt=0, sequentially estimate the sparse signal {x̂t}Tt=0 where yt = Axt.

1 Assume at t = 0, we know x̂0, N0. For i = 1 . . .NPF , assign particle set as,

N
(i)
0 = N0

x
(i)
0 = x̂0

2 At t > 0, for i = 1 . . . NPF :

(A
(i)
t )j ∼ Unifp(N

(i) c
t−1 )

(R
(i)
t )j ∼ Unifp(N

(i) ∗
t−1 ), N

(i) ∗
t−1 = {k : |(x(i)

t−1)k| < ∆, k ∈ N
(i)
t−1},

Importance sampling on the support : N
(i)
t = (N

(i)
t−1∪A

(i)
t )\R(i)

t . Then, using current observation
yt, perform Regularized modified CS (sort of substitute of PF-MT) to importance sample on the
signal xt as,

x
(i)
t = argmin

x
λ||(x − x

(i)
t−1)T ||22 + γ||xT c ||1 + ||yt −Ax||22

where T = N
(i)
t . Recompute the support as, N

(i)
t = {j : |(x(i)

t )j | > α}. Thus get, X
(i)
t =

[x
(i)
t , N

(i)
t ].

3 Assign importance weights as,

w
(i)
t ∝

p(yt|X(i)
t )p(X

(i)
t |X(i)

t−1)

π(X
(i)
t |X(i)

t−1, yt)

∝ e−||yt−Φx
(i)
t ||22e−

1
2 ((x

(i)
t −x

(i)
t−1)T )TΣ−1

ν
((x

(i)
t −x

(i)
t−1)T )

e−(λ||x
(i)
t −x

(i)
t−1||

2
2+γ||(x

(i)
t )Tc ||1+||yt−Φx

(i)
t ||22)

(5.5)

where T , N
(i)
t . Details can be found in the Appendix.

5 Estimate x̂t = x
(i)
t where i = argmaxiw

(i)
t

4 Resample [2, 3] on {x(i)
t }i=1...NPF

.

6 Set t← t+ 1 and go to step 2.
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CHAPTER 6. Conclusions and Future Directions

In chapter 2, we developed efficient particle filters for solving real-life computer vision prob-

lems associated with large dimensional state space and multimodal observation likelihood. In

chapter 3, we developed a novel approach to define a generative model for both 2D and 3D

nonstationary landmark shape sequences, which we call nonstationary shape activity (NSSA).

Applications in filtering, tracking, synthesis (using 3D-NSSA models) and change detection

are demonstrated. Filtering and tracking are studied in detail and significantly improved per-

formance over related work is demonstrated. We have also successfully demonstrated the use

of the NSSA for model-based compression of landmark shape sequence data. In chapter 4,

we have tackled the problem of visual tracking under variable illumination conditions as the

inference problem in a joint motion-illumination space. We used particle filter with mode

tracking (PF-MT) [15] to track on the large dimensional motion-illumination space. This key

step ensures accurate tracking with much fewer particles than those needed by any other ex-

isting particle filters. Together with this, we also demonstrated the use of change detection

algorithm for tracking across abrupt illumination variations. In chapter 6, we have proposed

a novel algorithm for sequential estimation (i.e. tracking) of spars signals from a small num-

ber of linear measurements. The algorithm utilizes a dynamic prior model on both sparsity

pattern change as well as a model on signal dynamics on the known part of the support. In

essence, it is a merger between particle filtering and compressive sensing : we call it - Par-

ticle Filtered Modified Compressive Sensing(PaFiMoCS). Our simulation experiments lead to

promising results for PaFiMoCS as compared to recent state-of-the-art including various com-

pressed sensing based techniques. As we discuss in the next section, this particular approach

towards recursive estimation of sparse signals has potential applications for solving real-life
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computer vision problems.

6.1 Future Directions

The problems addressed in this thesis and the methods proposed to solve them lead us to

several interesting future research directions. In this section, we outline a few directions for

future research work.

6.1.1 High Level Vision : Motion Activity Detection, Segmentation and Recog-

nition

In our preceding discussions, we demonstrated how efficient particle filtering together with

NSSA based dynamical model can track and detect activity changes from videos. One interest-

ing future direction would be extend this preliminary change detection mechanism for temporal

segmentation of motion activities. In other words, we would like to mark the time instants

where switching between the motion activities occur and recognize motion additivity class for

each segment using state-of-the-art machine learning techniques. There is great potential in

using kernel methods for classifying/recognizing motion activities from the time-series shape

velocity vectors on the shape space. Also, we could explore several other existing methods

and leverage from their ideas. For example, as explained earlier, piecewise ASMs or SSAs are

good for recognition problems, but not for automatic tracking, since they do not model the

transitions between pieces well. For automatic landmark extraction from image sequences fol-

lowed by recognition, one could use an NSSA based tracker to extract the landmark sequences,

followed by a piecewise ASM or SSA based recognizer as in past work. For change (or abnor-

mality) detection, NSSA can again be successfully used. Another radically different approach

towards activity classification/recognition could possibly be the use of neurally inspired models

developed in visual object recognition literature(models mimicking the visual cortex of human

brain together with statistical classifiers like multi-kernel learning methods, multi-class SVMs

[88]). These models can potentially be extended from static(object) to time-series(activity)

case. This approach is potentially very promising and there is much to explore.
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Another possible future direction towards enhancing the back-end tools of our system is

to combine our models with the Gaussian Process Latent Variable Model(GPVLMs) based

observation extraction techniques [35, 89]. Also, our optical flow based landmark extractor

could be improved by using ideas from [90]. This will make the system more efficient leading us

closer to a full-fledged smart computer vision system capable of high level visual understanding

like motion activity detection, segmentation and recognition.

Figure 6.1 An intuitive idea of the overall system for biomechanics applications

with automated medical diagnosis. This forms an interesting direction

of future research.

6.1.2 Biomechanics : Automated Medical Diagnosis

Another potential future direction would be to extend the dynamical models for landmark

shapes towards biomechanics applications for understanding how various body parts interact

with each other. In our current research, we use image based landmarks. But there is enormous

potential for extending our techniques while using wearable wireless sensors (e.g. accelerome-

ters, location sensor) at various body joints. The time series data from these sensors can be

used in a tracking cum abnormality detection framework for automated diagnosis of medical

conditions e.g. gait abnormalities due to Parkinson’s and Alzheimer’s diseases. An intuitive

overview of the system is demonstrated in Fig. 6.1. As a part of future research and post-
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doctoral work, we would like to take a look at the dynamical models for landmark shapes as

a mechanism for learning the temporal dynamics of a group of interacting sensors and de-

velop novel machine learning algorithms enabling medical diagnosis, temporal segmentation

and activity recognition from accelerometer data.

6.1.3 PF to PaFiMoCS : Better Visual Tracking

In chapter 4, we developed a dynamical model for illumination using Legendre basis func-

tions. One important limitation of the scheme is the extent of complexity of illumination

distribution it can handle. This is because we use basis sets up to a fixed order(5 or less). If

we want to incorporate higher order basis functions to facilitate higher modes of illumination

variations, it lead us to larger and larger dimension of the state space. This, obviously, is

a challenge for any particle filtering framework. One promising direction of future research

could be to use modified compressive sensing instead of the mode-tracking step of PF-MT. The

advantage of such an approach comes from the fact that even the complex illumination pattern

of the scene can have a sparse representation in a Legendre basis set where we deliberately

include higher order basis functions up to 20, for example. Now, the illumination of the scene

may just need 4 of the functions(of any order up to 20) to be represented with reasonable

accuracy. Thus, learning the illumination becomes estimating a 4-sparse vector of length 20.

This framework also gives more flexibility on the variation patterns of illumination distribution

rather than sticking to a fixed basis set. Here’s the basis set contributing to the instantaneous

illumination conditions itself could be dynamic and hence more realistic. The estimation of the

illumination vector can be formulated from a PaFiMoCS perspective (chapter 5) where we can

use a dynamical model on the sparsity pattern change for the illumination vector and utilize

regularized modified CS concept due to the fact that illumination variation would be gradual

i.e. previous estimate of the illumination vector would be very close the current one. Thus the

mode tracking step for illumination particle (in Algorithm 10, chapter 4) can be replace by a

PaFiMoCS style step as,

Λ
(i)
t = argmin

Λ
λ||(Λ)T c ||1 + γ||(Λ− Λ

(i)
t−1)T ||22 + ||Yt(ROI(U

(i)
t ))−AΛ||22
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where T is the predicted support and the matrix A incorporates all the Legendre basis functions

together with the initial template as describe in chapter 4. The sparse illumination vector Λ is

estimated from the above optimization step. It is to be noted that here we are using modified

CS even though A is a tall matrix. Basically, we are emphasizing on the sparsity of the

underlying signal (prior knowledge) while reconstructing it. Standard least square approach

might not result in a sparse solution which does not use the prior knowledge of sparsity.

Similar methodology was used in [93] for sparse channel estimation. This framework has

another potential application as discussed in the section below.

Figure 6.2 Demonstration of the idea for occlusion detection and handling in

visual tracking from a compressive sensing perspective. It is inspired

by the work of [91] for robust face recognition under occlusion.

6.1.3.1 New Approach to Occlusion Detection and Handling

As mentioned is the section above, the illumination vector can be estimated using com-

pressive sensing style optimization step. What is remarkable is that the same techniques can

possibly be very robust to occlusion when the object is partially occluded. As demonstrated

in Fig. 6.2, the occlusion can be modeled as a sparse error (denoted as O) similar in spirit to

[91, 92]. Now, even with partial occlusion, there is a possibility of robust estimation of both

illumination vector and the occlusion error vector. The following problem for estimating the

jointly sparse vector of illumination parameters and occlusion error can be posed as,

[Λ̂ Ô] = arg min
[Λ O]
||[Λ O]||1 + ||Yt(ROI)− [A I][Λ O]T ||22 (6.1)
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It is an approach worth exploring in future work. Now, if the occluding object intensity

is different from that of the object, this scheme is expected to reconstruct both illumination

vector Λ and occlusion error O. The estimating of O has profound ramification from a computer

vision perspective as it not only means occlusion detection but also leads to the localization

of occlusion in the current template. Thus we can exactly point out which are the outlier

pixels and discard them in the template matching step leading to a more robust visual tracker

capable of detecting and handling ‘partial occlusion’. Also, in many cases, the occluding object

moves slowly over the target. Then, the sparsity pattern of O and in general [Λ O], would

change slowly enabling us to use the tools of modified compressive sensing. One can also use

a occlusion motion prediction framework to predict the sparsity pattern change corresponding

to O which can again be fit into our PaFiMoCS framework which relies on a dynamical model

of the support change (here, considered for the joint sparse vector - [Λ O]). An open question

is : given a support estimate T of [Λ O] can the mod-CS version of the above problem do

better ? (in terms of number of measurements required). The corresponding mod-CS version

can be posed as,

[Λ̂ Ô] = arg min
[Λ O]
||[Λ O]T c ||1 + ||Yt(ROI)− [A I][Λ O]T ||22 (6.2)

It is to be noted that this idea is still in a conceptual level and would require a lot of analysis,

both theoretical and experimental, in order to validate its usefulness. Thus it potentially forms

a very interesting direction of future research which can lead to a new approaches towards

occlusion detection/handling in visual tracking and benefit computer vision in general.
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